Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

University of British Columbia

anweshray@math.ubc.ca

March 11, 2021

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Ari	thmetic
St	atistics
and	Iwasawa
theory	

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Joint with D. Kundu (UBC).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Arithmetic statistics (of elliptic curves) is the study of the average behaviour of certain invariants associated to elliptic curves. The elliptic curves are parametrized according to height, conductor or discriminant.
- Iwasawa theory is concerned with the structure of certain Galois modules associated to elliptic curves. These Galois modules are considered over certain infinite extensions of Q.

Elliptic curves and Galois Representations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Let *E* be an elliptic curve over \mathbb{Q} .
- Fix a prime p, denote by E[pⁿ] the pⁿ torsion subgroup of E(Q
).
- The *p*-adic Tate-module $T_p(E)$ is the inverse limit

$$T_p(E) = \varprojlim_n E[p^n],$$

where the inverse limit is taken w.r.t. multiplication by p maps $\times p : E[p^{n+1}] \to E[p^n]$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The Tate-module $T_p(E)$ is a free \mathbb{Z}_p -module of rank 2, and is equipped with an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.
- To the pair (*E*, *p*), the Galois action on the Tate-module is encoded by a Galois representation:

 $\rho_{E,p} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_p).$

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

- Thus an elliptic curve E gives rise to infinitely many Galois representations ρ_{E,p}, as p ranges through all prime numbers.
- There are various arithmetic invariants associated to the Galois representation ρ_{E,p}, which are highly dependent on the prime p and the elliptic curve E.
- In this talk, we focus on certain invariants from Iwasawa theory.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

We study two interrelated problems:

- For a fixed elliptic curve E we study invariants associated to the p-adic Galois representation ρ_{E,p} as p ranges over all primes.
- For a fixed prime *p*, we study the average behaviour of invariants associated to *ρ*_{E,p} as *E* ranges over all elliptic curves defined over Q.

Motivation for Iwasawa theory

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Let *p* be a prime number.

 Iwasawa theory is concerned with the structure of certain Galois modules arising from arithmetic.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

■ These modules are defined over certain infinite Galois extensions of Q.

The Cyclotomic \mathbb{Z}_p -extension

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • Let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted

 $\mathbb{Q}(\mu_{p^{n+1}})$ \mathbb{Q}_n

イロト 不得 トイヨト イヨト 二日

Sac

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The tower of number fields $\mathbb{Q} = \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \ldots$ is called the cyclotomic tower.
- \blacksquare The field \mathbb{Q}_∞ is taken to be the union

$$\mathbb{Q}_{\infty} := \bigcup_{n \geq 1} \mathbb{Q}_n.$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Galois group $Gal(\mathbb{Q}_{\infty}/\mathbb{Q})$ is isomorphic to \mathbb{Z}_{p} .

Early Investigations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Iwasawa's early ivestigations led him to study the variation of *p*-class groups of Q_n as n → ∞.
- For n ≥ 1, set A_n to denote the p-primary part of the class group of Q_n

$$\mathcal{A}_n := \mathsf{Cl}(\mathbb{Q}_n)[p^\infty].$$

 \blacksquare Iwasawa showed that there are invariants $\mu,\lambda,\nu\geq 0$ such that

$$\#\mathcal{A}_n = p^{\mu p^n + \lambda n + \nu}$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

for large values of n.

Iwasawa's approach

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- There are natural maps $\mathcal{A}_{n+1} \to \mathcal{A}_n$ and the inverse limit $\mathcal{A}_{\infty} := \lim_{n \to \infty} \mathcal{A}_n$ is a module over $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}).$
- Iwasawa introduced the completed algebra $\Lambda := \lim_{n \to \infty} \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})] \simeq \mathbb{Z}_p[[x]].$
- He showed that A_∞ is a finitely generated torsion Z_p[[x]]-module and his theorem is a consequence of the structure theory of such modules.

Iwasawa theory of Elliptic Curves

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Greenberg and Mazur initiated the Iwasawa theory of elliptic curves over Q.
- Throughout, we let E be an elliptic curve over \mathbb{Q} with good ordinary reduction at p.
- They studied the variation of Selmer groups as one goes up the tower.

Some notation

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • For any abelian group M, set $M[p^n] := \ker(M \xrightarrow{p^n} M)$ and $M[p^{\infty}] := \bigcup_{n \ge 1} M[p^n]$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Selmer groups

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies ■ For each number field extension F of Q, the Selmer group Sel_p∞(E/F) consists of Galois cohomology classes

$$f\in H^1(\bar{F}/F,E[p^\infty])$$

satisfying suitable local conditions.

It fits into a short exact sequence

 $0 \to E(F) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/F) \to \operatorname{III}(E/F)[p^{\infty}] \to 0.$

Selmer groups

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies \blacksquare The Selmer group over \mathbb{Q}_∞ is taken to be the direct limit

$$\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{n}).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

The Pontryagin dual

$$\mathfrak{M}_{\infty} := \operatorname{Hom}_{\operatorname{cnts}}(\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty}), \mathbb{Q}_p/\mathbb{Z}_p)$$
 is a finitely
generated and torsion $\Lambda \simeq \mathbb{Z}_p[[x]]$ module.

Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies ■ By the structure theory of Z_p[[x]] modules, up to a pseudoisomorphism, M_∞ decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_p[[x]]/(p^{\mu_j})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_p[[x]]/(f_j(x))\right)$$

.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 \blacksquare The μ and λ invariants are as follows

$$\mu_{E,p} := \sum_{j} \mu_{j} \text{ and } \lambda_{E,p} := \sum_{j} \deg f_{j}(x).$$

• The characteristic series is defined as follows:

$$f_{E,p}(x) := p^{\mu} \prod_{j} f_j(x).$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- It is conjectured that when E[p] is irreducible as a Galois module, then, μ_{E,p} = 0.
- Therefore, if *E* is a fixed elliptic curve, it is expected that $\mu_{E,p} = 0$ for all but a small finite set of primes *p*.
- Let r_E be the rank of the Mordell Weil group $E(\mathbb{Q})$. The λ -invariant satisfies the inequality $\lambda_{E,p} \ge r_E$.

- We would like to model the average behaviour of the lwasawa invariants μ and λ in two cases:
 - 1 when E is fixed and p-varies,
 - 2 when p is fixed and E varies.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

• Consider the following result of R. Greenberg:

Theorem (R. Greenberg)

Let E be an elliptic curve with $r_E = 0$. Then the following equivalent conditions are satisfied for 100% of the ordinary primes p:

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

•
$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = 0$

• Sel
$$(E/\mathbb{Q}_{\infty}) = 0.$$

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The result may be generalized various ways, for instance:

Theorem

Let E be an elliptic curve with $r_E = 0$. Then the following equivalent conditions are satisfied for all but finitely many primes p at which E has supersingular reduction:

•
$$\mu_{E,p}^{\pm} = 0 \text{ and } \lambda_{E,p}^{\pm} = 0,$$

• $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\infty}) = 0.$

■ Here, Sel[±](E/Q_∞) are Kobayashi's signed Selmer groups and µ[±]_{E,p}, λ[±]_{E,p} the signed Iwasawa invariants.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

- Let *E* be an elliptic curve and *p* a prime number. The cohomology groups Hⁱ(Γ, Sel(E/Q_∞)) = 0 for i ≥ 2.
- Duality for Γ tells us that

$$H^{1}(\Gamma, \operatorname{Sel}(E/\mathbb{Q}_{\infty}))$$

$$\simeq H_{1}(\Gamma, \operatorname{Sel}(E/\mathbb{Q}_{\infty}))$$

$$= \operatorname{Sel}(E/\mathbb{Q}_{\infty})_{\Gamma}.$$

There is a natural map

 $\Phi : \operatorname{Sel}(E/\mathbb{Q}_{\infty})^{\Gamma} \to \operatorname{Sel}(E/\mathbb{Q}_{\infty})_{\Gamma}.$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

The (generalized) Euler characteristic

$$\chi(\Gamma, E[p^{\infty}]) := \frac{\# \ker \Phi}{\# \operatorname{cok} \Phi}.$$

Let

$$f_{E,p}(x) = a_r x^r + a_{r+1} x^{r+1} + \dots$$

be the characteristic series, whith $a_r \neq 0$.

• The order of vanishing $r = r_E$ and

$$a_r \sim \chi(\Gamma, E[p^{\infty}]).$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem

The truncated Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is an integer and the following conditions are equivalent:

$$\chi(\Gamma, E[p^{\infty}]) = 1$$

•
$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = r_E$, where $r_E = \operatorname{rank} E(\mathbb{Q})$.

p-adic BSD

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies Perrin-Riou and Schneider proved the following *p*-adic analogue of the BSD formula:

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times \prod_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{\#(E(\mathbb{Q})[p^{\infty}])^2}.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Consider the quantities:

- *R*_{E,p} is the order of the *p*-primary part of the *p*-adic regulator of *E*/ℚ,
- III_{E,p} the order of the *p*-primary part of the Tate Shafarevich group is *E*,
- $\tau_{E,p}$ the order of the *p*-primary part of the Tamagawa product $\prod_{\ell} c_{\ell}(E)$,

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $\alpha_{E,p} := \# \tilde{E}(\mathbb{F}_p)[p^{\infty}].$

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies Assume that p is an ordinary prime. Have the following implications:

$$\begin{split} & R_{E,p} = 1, \mathrm{III}_{E,p} = 1, \tau_{E,p} = 1, \alpha_{E,p} = 1 \\ \Rightarrow & \chi(\Gamma, E[p^{\infty}]) = 1 \\ \Leftrightarrow & \mu_{E,p} = 0 \text{ and } \lambda_{E,p} = r_E \\ \Leftrightarrow & \mathrm{Sel}(E/\mathbb{Q}_{\infty})^{\vee} \text{ is a finitely generated} \mathbb{Z}_p\text{-module of rank } r_E. \end{split}$$

イロト イポト イヨト イヨト

€ 990

Elliptic curve E fixed and the prime p varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Fix E and let p vary. We expect that for 100% of the primes,

$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = r_E$.

- It is easy to see that $III_{E,p} = 1$ and $\tau_{E,p} = 1$ for all but finitely many primes p.
- Primes p for which α_{E,p} is divisible by p are called anomalous primes. It is expected that 0% of primes are anomalous.
- The *p*-adic regulator *R_{E,p}* is more mysterious, computational evidence points to *R_{E,p}* = 1 for 0% of primes.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

- There are analogues in the case when E has supersingular reduction at p.
- We are led to make the following conjecture:

Conjecture

Let $E_{/\mathbb{Q}}$ be an elliptic curve of rank r_E . For 100% of the primes p at which E has good ordinary reduction (resp. supersingular), $\mu = 0$ and $\lambda = r_E$ (resp. $\mu^+ = \mu^- = 0$ and $\lambda^+ = \lambda^- = r_E$).

Fixed prime p and E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Fix a prime *p*.
- Recall that any elliptic curve *E* over Q admits a unique Weierstrass equation

$$E: y^2 = x^3 + Ax + B$$

where A, B are integers and $gcd(A^3, B^2)$ is not divisible by any twelfth power.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

It is expected that 50% of elliptic curves have rank 0 and the other 50% have rank 1.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The height of *E* is defined as follows:

$$H(E) := \max\left(|A|^3, B^2\right).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

• Let $\mathcal{E}(X)$ of elliptic curves of height < X.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Let $\mathcal{A}_p(X) \subset \mathcal{E}(X)$ be the subset of elliptic curves with rank 0 and good ordinary reduction at p.
- Let $\mathcal{A}_{p}^{0}(X) \subseteq \mathcal{A}_{p}(X)$ be the subset of elliptic curves for which the Selmer group $\operatorname{Sel}(E/\mathbb{Q}_{\infty}) = 0$, and let $\mathcal{A}_{p}'(X) := \mathcal{A}_{p}(X) \setminus \mathcal{A}_{p}^{0}(X).$
- We analyze the proportion of elliptic curves $E_{/\mathbb{Q}}$ for which the quantities $\coprod_{E,p}$, $\tau_{E,p}$, $\alpha_{E,p}$ are units.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies ■ Ideally, we would like upper bounds for the proportion lim sup_{X→∞} $\frac{A'_p(X)}{A_p(X)}$. We obtain upper bounds for lim sup_{X→∞} $\frac{A'_p(X)}{\mathcal{E}(X)}$.

Theorem

Let $p \ge 5$ be a fixed prime. We have that:

$$\limsup_{X\to\infty}\frac{\mathcal{A}'_p(X)}{\mathcal{E}(X)}\leq\mathfrak{d}_p+\sum_{\ell\neq p}\frac{(\ell-1)^2}{\ell^{p+2}}+\zeta(10)\cdot\frac{d(p)}{p^2}$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Here, 0_p is the proportion of elliptic curves for which III_{E,p} is a unit.
- Let d(p) be the number of pairs $\kappa = (a, b) \in \mathbb{F}_p \times \mathbb{F}_p$ such that

1
$$\Delta(\kappa) \neq 0$$
.
2 $E_{\kappa} : y^2 = x^3 + ax + b$ has a point over \mathbb{F}_p of order p .

For the primes p in the range $5 \le p < 500$, computations on sage show that $d(p) \le 1$ and d(p) = 1 for $p \in \{5, 7, 61\}$. The number d(p) is closely related to the Kronecker class number of 1 - 4p.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies