Iwasawa theory and congruences for the symmetric square of a modular form

Anwesh Ray

University of British Columbia

anweshray@math.ubc.ca

December 6, 2021

Anwesh Ray (UBC)

I.T and congruences for the Sym²

December 6, 2021

Joint with Ramdorai Sujatha and Vinayak Vatsal.

		FALLER A E FA E F E	*) 4 (*
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	3/22

100

The *p*-primary torsion group *E*[*p*[∞]] ⊂ *E*(Q
 (Q) admits an action of the absolute Galois group Gal(Q
 (Q).

- The *p*-primary torsion group *E*[*p*[∞]] ⊂ *E*(Q
 (Q) admits an action of the absolute Galois group Gal(Q
 (Q).
- For each number field extension *F* of Q, the Selmer group Sel_{p∞}(*E*/*F*) consists of Galois cohomology classes

$$f \in H^1(\operatorname{Gal}\left(\bar{\mathbb{Q}}/F\right), E[p^\infty])$$

satisfying suitable local conditions.

- The *p*-primary torsion group *E*[*p*[∞]] ⊂ *E*(Q
 (Q) admits an action of the absolute Galois group Gal(Q
 (Q).
- For each number field extension *F* of Q, the Selmer group Sel_{p∞}(*E*/*F*) consists of Galois cohomology classes

$$f \in H^1(\mathsf{Gal}\left(\bar{\mathbb{Q}}/F
ight), E[p^\infty])$$

satisfying suitable local conditions.

• It fits into a short exact sequence

$$0 \to E(F) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/F) \to \operatorname{III}(E/F)[p^{\infty}] \to 0.$$

3/22

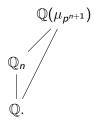
The Cyclotomic \mathbb{Z}_{p} -extension

The Cyclotomic \mathbb{Z}_{p} -extension

• Let *p* be a fixed prime number.

э

- Let p be a fixed prime number.
- For $n \in \mathbb{Z}_{\geq 1}$, let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted



	٩ - ١	비 에 소리에 에 관 에 관 에 관 이 관	୬୯୯
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	5 / 22

• The tower of number fields $\mathbb{Q} \subseteq \mathbb{Q}_1 \subseteq \mathbb{Q}_2 \subseteq \cdots \subseteq \mathbb{Q}_n \subseteq \ldots$ is called the cyclotomic tower.

3

- The tower of number fields $\mathbb{Q} \subseteq \mathbb{Q}_1 \subseteq \mathbb{Q}_2 \subseteq \cdots \subseteq \mathbb{Q}_n \subseteq \ldots$ is called the cyclotomic tower.
- The field \mathbb{Q}_{cyc} is taken to be the union

$$\mathbb{Q}_{\mathsf{cyc}} := igcup_{n \geq 1} \mathbb{Q}_n.$$

The Galois group $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q})$ is isomorphic to \mathbb{Z}_p .

- The tower of number fields $\mathbb{Q} \subseteq \mathbb{Q}_1 \subseteq \mathbb{Q}_2 \subseteq \cdots \subseteq \mathbb{Q}_n \subseteq \ldots$ is called the cyclotomic tower.
- The field \mathbb{Q}_{cyc} is taken to be the union

$$\mathbb{Q}_{\mathsf{cyc}} := igcup_{n \ge 1} \mathbb{Q}_n.$$

The Galois group $\Gamma := Gal(\mathbb{Q}_{cyc}/\mathbb{Q})$ is isomorphic to \mathbb{Z}_p .

 \bullet The Selmer group over $\mathbb{Q}_{\mathsf{cyc}}$ is taken to be the limit

$$\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}}) := \varinjlim_{n \to \infty} \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_n).$$

	< □	< 🗗 🕨	< ≣ >	< ≣ >	Ξ.	$\mathcal{O} \land \mathcal{O}$
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	Dec	ember	6, 2021		6 / 22

Let

$$g_1=\sum_{n=1}^\infty a(n,g_1)q^n$$
 and $g_2=\sum_{n=1}^\infty a(n,g_2)q^n$

be *p*-ordinary normalized Hecke newforms of level M_1 and M_2 and *p* a prime number.

Let

$$g_1=\sum_{n=1}^\infty a(n,g_1)q^n$$
 and $g_2=\sum_{n=1}^\infty a(n,g_2)q^n$

be *p*-ordinary normalized Hecke newforms of level M_1 and M_2 and *p* a prime number.

 Let L be the number field generated by the Fourier coefficients of g₁ and g₂ and p a prime of O_L above p.

Let

$$g_1=\sum_{n=1}^\infty a(n,g_1)q^n$$
 and $g_2=\sum_{n=1}^\infty a(n,g_2)q^n$

be *p*-ordinary normalized Hecke newforms of level M_1 and M_2 and *p* a prime number.

- Let L be the number field generated by the Fourier coefficients of g₁ and g₂ and p a prime of O_L above p.
- We say that g_1 and g_2 are p-congruent if

$$a(n,g_1)\equiv a(n,g_2)\mod \mathfrak{p}$$

for all *n* coprime to M_1M_2p .

	< [୭୯୯
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	7 / 22

• Let \mathcal{O} denote the completion of \mathcal{O}_L at \mathfrak{p} and K its fraction field.

	. ₹		500
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	7 / 22

- Let \mathcal{O} denote the completion of \mathcal{O}_L at \mathfrak{p} and K its fraction field.

- Let \mathcal{O} denote the completion of \mathcal{O}_L at \mathfrak{p} and K its fraction field.
- Let $\rho_{i,K}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(K)$ a Galois representation associated with g_i and $V_i \simeq K \oplus K$ the underlying vector space.
- Choose a Galois stable \mathcal{O} -lattice $T_i \subset V_i$ and let

$$ar
ho_i: {\operatorname{\mathsf{Gal}}}(ar {\mathbb Q}/{\mathbb Q}) o {\operatorname{\mathsf{GL}}}_2({\mathcal O}/{\mathfrak p})$$

be the residual representation.

- Let \mathcal{O} denote the completion of \mathcal{O}_L at \mathfrak{p} and K its fraction field.
- Let $\rho_{i,K}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(K)$ a Galois representation associated with g_i and $V_i \simeq K \oplus K$ the underlying vector space.
- Choose a Galois stable \mathcal{O} -lattice $T_i \subset V_i$ and let

 $\bar{\rho}_i: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathcal{O}/\mathfrak{p})$

be the residual representation.

• The forms are p-congruent when $\bar{\rho}_1^{ss} \simeq \bar{\rho}_2^{ss}$.

- Let \mathcal{O} denote the completion of \mathcal{O}_L at \mathfrak{p} and K its fraction field.
- Let $\rho_{i,K}$: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(K)$ a Galois representation associated with g_i and $V_i \simeq K \oplus K$ the underlying vector space.
- Choose a Galois stable \mathcal{O} -lattice $T_i \subset V_i$ and let

$$ar
ho_i: {\operatorname{Gal}}(ar {\mathbb Q}/{\mathbb Q}) o {\operatorname{GL}}_2({\mathcal O}/{\mathfrak p})$$

be the residual representation.

- The forms are $\mathfrak{p}\text{-congruent}$ when $\bar{\rho}_1^{\mathrm{ss}}\simeq\bar{\rho}_2^{\mathrm{ss}}.$
- Assume throughout that $\bar{\rho}_i$ is absolutely irreducible for i = 1, 2, and thus the residual representations are isomorphic.

		이 이 머리가 가 눈가 가 눈가 나는 눈	*) 4 (*
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	8 / 22

• Let $r_i = \operatorname{sym}^2(\rho_i) : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_3(\mathcal{O})$ be the symmetric square representation, note that $\overline{r}_1 \simeq \overline{r}_2$.

- Let $r_i = \operatorname{sym}^2(\rho_i) : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_3(\mathcal{O})$ be the symmetric square representation, note that $\overline{r}_1 \simeq \overline{r}_2$.
- Let T_i be the underlying Galois stable O-lattice, on which Gal(Q/Q) acts via r_i and A_i := T_i ⊗ Q_p/Z_p the associated p-divisible groups.

- Let $r_i = \operatorname{sym}^2(\rho_i) : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_3(\mathcal{O})$ be the symmetric square representation, note that $\overline{r}_1 \simeq \overline{r}_2$.
- Let Σ be the set of primes dividing M₁M₂p, and Q_Σ ⊂ Q
 the maximal extension of Q unramified at all primes ℓ ∉ Σ.

- Let $r_i = \operatorname{sym}^2(\rho_i) : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_3(\mathcal{O})$ be the symmetric square representation, note that $\overline{r}_1 \simeq \overline{r}_2$.
- Let Σ be the set of primes dividing M_1M_2p , and $\mathbb{Q}_{\Sigma} \subset \overline{\mathbb{Q}}$ the maximal extension of \mathbb{Q} unramified at all primes $\ell \notin \Sigma$.
- The *p*-primary Selmer group Sel($\mathbb{A}_i/\mathbb{Q}_{cyc}$) is defined as the kernel of the following restriction map

$$H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\mathsf{cyc}},\mathbb{A}_i) o igoplus_{\ell\in\Sigma} \mathcal{H}_\ell(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}).$$

lwasawa invariants

	< □	< 🗗 ►	< ≣ >	◆夏≯	Ξ.	୬୯୯
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	Dec	ember	6, 2021		9/22

• The Iwasawa algebra Λ is defined as the following inverse limit $\Lambda := \lim_{n} \mathbb{Z}_{\rho}[Gal(\mathbb{Q}_n/\mathbb{Q})]$, and is isomorphic to the formal power series ring $\mathbb{Z}_{\rho}[[T]]$.

9/22

- The Iwasawa algebra Λ is defined as the following inverse limit $\Lambda := \lim_{n \to \infty} \mathbb{Z}_p[Gal(\mathbb{Q}_n/\mathbb{Q})]$, and is isomorphic to the formal power series ring $\mathbb{Z}_p[[T]]$.
- Loeffler and Zerbes showed that the Selmer group Sel($\mathbb{A}_i/\mathbb{Q}_{cyc}$) is a cotorsion Λ -module.

- The Iwasawa algebra Λ is defined as the following inverse limit $\Lambda := \lim_{n \to \infty} \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})]$, and is isomorphic to the formal power series ring $\mathbb{Z}_p[[T]]$.
- Loeffler and Zerbes showed that the Selmer group $Sel(\mathbb{A}_i/\mathbb{Q}_{cyc})$ is a cotorsion Λ -module.
- Let *M* be a cofinitely generated, cotorsion Z_p[[*T*]]-module and M[∨] its Pontryagin-dual.

	< [E
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	10/22

 By the structure theory of Z_p[[T]] modules, up to a pseudoisomorphism, M[∨] decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{\rho}[[T]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{\rho}[[T]]/(f_{j}(T))\right).$$

 By the structure theory of Z_p[[T]] modules, up to a pseudoisomorphism, M[∨] decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{p}[[T]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{p}[[T]]/(f_{j}(T))\right).$$

• Set
$$\mu(M) = \sum \mu_j$$
 and $\lambda(M) = \sum \deg f_j$.

 By the structure theory of Z_p[[T]] modules, up to a pseudoisomorphism, M[∨] decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{\rho}[[T]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{\rho}[[T]]/(f_{j}(T))\right).$$

• Set
$$\mu(M) = \sum \mu_j$$
 and $\lambda(M) = \sum \deg f_j$.

• The characteristic element is the product $\operatorname{char}_M := p^{\mu} \times \prod f_j$.

Conjecture (Iwasawa main conjecture)

Let f be a p-ordinary Hecke eigencuspform of weight $k \ge 2$,

$$\operatorname{char}(\operatorname{Sel}_{p^{\infty}}(\mathbb{A}_{f}/\mathbb{Q}_{\operatorname{cyc}})) = U(T) \cdot L_{p}(\operatorname{Sym}^{2}(f), T),$$

for some unit $U(T) \in \Lambda^{\times}$.

10/22

Algebraic & analytic μ and $\lambda\text{-invariants}$

		A REPORT OF A REPORT	=
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	11/22

100

Algebraic & analytic μ and $\lambda\text{-invariants}$

• For i = 1, 2, let μ_i^{alg} and λ_i^{alg} be the Iwasawa-invariants of $\text{Sel}_{p^{\infty}}(\mathbb{A}_i/\mathbb{Q}_{\text{cyc}})$.

3

- For i = 1, 2, let μ_i^{alg} and λ_i^{alg} be the Iwasawa-invariants of $\text{Sel}_{p^{\infty}}(\mathbb{A}_i/\mathbb{Q}_{\text{cyc}})$.
- For i = 1, 2, let μ_i^{an} and λ_i^{an} be the Iwasawa-invariants of L_p(Sym²(g_i), T). In other words,

$$L_p(\operatorname{Sym}^2(g_i), T) = p^{\mu}a(T)u(T),$$

where $\mu = \mu_i^{an}$, a(T) is a distinguished polynomial of degree λ_i^{an} and u(T) is a unit in Λ .

■▶ ■ のへの

Main result

Theorem (R, R. Sujatha, V. Vatsal)

Let g_1 and g_2 be non-CM, p-ordinary, p-congruent newcuspforms of weight k > 2 and trivial nebentype character. Let M_i be the level of g_i and Σ_0 be the set of primes $\ell \neq p$ such that $\ell | M_1 M_2$. Assume that $p > \max\{k - 2, 3\}$. Then, for $* \in \{alg, an\}$, we have that $\mu_1^* = 0 \Leftrightarrow \mu_2^* = 0$. Furthermore, if $\mu_1^* = 0$ (or equivalently, $\mu_2^* = 0$), then,

$$\lambda_1^* - \lambda_2^* = \sum_{\ell \in \Sigma_0} \left(\sigma_2^{(\ell)} - \sigma_1^{(\ell)}
ight).$$

In the case when $5 \le p \le k-2$, the result is conditional, provided a certain version of Ihara's lemma holds.

Anwesh Ray (UBC)	Anwes	hRay (UBC)
------------------	-------	--------	------

			- 2 A C
Anwesh Ray (UBC)	I.T and congruences for the Sym^2	December 6, 2021	13/22

4 D N 4 B N 4 B N 4 B N

ъ

• The imprimitive Selmer group $\operatorname{Sel}^{\Sigma_0}(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}})$ is the kernel of the map $H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\operatorname{cyc}},\mathbb{A}_i) \to \mathcal{H}_p(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}}).$

- The imprimitive Selmer group $\operatorname{Sel}^{\Sigma_0}(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}})$ is the kernel of the map $H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\operatorname{cyc}},\mathbb{A}_i) \to \mathcal{H}_p(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}}).$
- These Selmer groups fit into a short exact sequence

$$0 \to \mathsf{Sel}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \to \mathsf{Sel}^{\Sigma_0}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \to \bigoplus_{\ell \in \Sigma_0} \mathcal{H}_\ell(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \to 0.$$

• The imprimitive Selmer group $\operatorname{Sel}^{\Sigma_0}(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}})$ is the kernel of the map $H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\operatorname{cyc}},\mathbb{A}_i) \to \mathcal{H}_p(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}}).$

 $\ell \in \Sigma_0$

• These Selmer groups fit into a short exact sequence $0 \rightarrow \mathsf{Sel}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \rightarrow \mathsf{Sel}^{\Sigma_0}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \rightarrow \bigoplus \mathcal{H}_{\ell}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \rightarrow 0.$

• Let
$$\sigma_i^{(\ell)}$$
 be the \mathbb{Z}_p -corank of $\mathcal{H}_\ell(\mathbb{A}_i/\mathbb{Q}_{cyc})$, we find that
 $\lambda_i^{alg} = \lambda_i^{alg,\Sigma_0} - \sum_{\ell \in \Sigma_0} \sigma_i^{(\ell)}.$

- The imprimitive Selmer group $\operatorname{Sel}^{\Sigma_0}(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}})$ is the kernel of the map $H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\operatorname{cyc}},\mathbb{A}_i) \to \mathcal{H}_p(\mathbb{A}_i/\mathbb{Q}_{\operatorname{cyc}}).$
- These Selmer groups fit into a short exact sequence

$$0 \to \mathsf{Sel}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \to \mathsf{Sel}^{\boldsymbol{\Sigma}_0}(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \to \bigoplus_{\ell \in \boldsymbol{\Sigma}_0} \mathcal{H}_\ell(\mathbb{A}_i/\mathbb{Q}_{\mathsf{cyc}}) \to 0.$$

• Let
$$\sigma_i^{(\ell)}$$
 be the \mathbb{Z}_p -corank of $\mathcal{H}_\ell(\mathbb{A}_i/\mathbb{Q}_{cyc})$, we find that
 $\lambda_i^{alg} = \lambda_i^{alg, \Sigma_0} - \sum_{\ell \in \Sigma_0} \sigma_i^{(\ell)}.$

• The imprimitive λ -invariants are equal $\lambda_1^{\text{alg},\Sigma_0} = \lambda_2^{\text{alg},\Sigma_0}$. This translates into the following relationship between primitive λ -invariants

$$\lambda_1^{\mathsf{alg}} - \lambda_2^{\mathsf{alg}} = \sum_{\ell \in \Sigma_0} \left(\sigma_2^{(\ell)} - \sigma_1^{(\ell)} \right).$$

Anwesh Ray (UBC)

		Le se se se s	=
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	14 / 22

_

The Petersson product of modular forms f₁, f₂ of weight k on Γ₀(M) (at least one of which is cuspidal) to be as follows:

$$\langle f_1, f_2 \rangle_M = \int_{B(M)} f_1(z) \overline{f_2(z)} y^{k-2} dx dy$$

and the integral is taken over a fundamental domain B(M) for $\Gamma_0(M)$.

The Petersson product of modular forms f₁, f₂ of weight k on Γ₀(M) (at least one of which is cuspidal) to be as follows:

$$\langle f_1, f_2 \rangle_M = \int_{B(M)} f_1(z) \overline{f_2(z)} y^{k-2} dx dy$$

and the integral is taken over a fundamental domain B(M) for $\Gamma_0(M)$. • We define a modified Petersson product by setting

$$\{v,w\}_N = \langle v,w^c | W_N \rangle_N.$$

The Petersson product of modular forms f₁, f₂ of weight k on Γ₀(M) (at least one of which is cuspidal) to be as follows:

$$\langle f_1, f_2 \rangle_M = \int_{B(M)} f_1(z) \overline{f_2(z)} y^{k-2} dx dy$$

and the integral is taken over a fundamental domain B(M) for $\Gamma_0(M)$. • We define a modified Petersson product by setting

$$\{v,w\}_N = \langle v,w^c | W_N \rangle_N.$$

 One sees from the definition that {·, ·} is C-linear in both variables, and that it satisfies {v|t, w}_N = {v, w|t}_N, for any Hecke operator t.

				-	2.40
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December	6, 2021		15 / 22

4 D N 4 B N 4 B N 4 B N

-

• Let $g = g_i$, the *L*-function $L(s,g) = \sum a(n,g)n^{-s}$ of g has the formal Euler product expansion

$$L(s,g) = \left(\prod_{\ell} (1-\alpha_{\ell}q^{-s})(1-\beta_{\ell}q^{-s})\right)^{-1}$$

.

3 🕨 🤅 3

• Let $g = g_i$, the *L*-function $L(s,g) = \sum a(n,g)n^{-s}$ of g has the formal Euler product expansion

$$L(s,g) = \left(\prod_{\ell} (1-lpha_{\ell}q^{-s})(1-eta_{\ell}q^{-s})
ight)^{-1}$$

٠

• Let Σ be the set of primes dividing M_1M_2 .

• Let $g = g_i$, the *L*-function $L(s,g) = \sum a(n,g)n^{-s}$ of g has the formal Euler product expansion

$$L(s,g) = \left(\prod_{\ell} (1-\alpha_{\ell}q^{-s})(1-\beta_{\ell}q^{-s})\right)^{-1}$$

- Let Σ be the set of primes dividing M_1M_2 .
- Let $f = f_i$ be the modular form

$$f(z) := \sum_{(n,\Sigma)=1} a(n,g)q^n.$$

٠

• Let $g = g_i$, the L-function $L(s,g) = \sum a(n,g)n^{-s}$ of g has the formal Euler product expansion

$$L(s,g) = \left(\prod_{\ell} (1-\alpha_{\ell}q^{-s})(1-\beta_{\ell}q^{-s})\right)^{-1}$$

•

- Let Σ be the set of primes dividing $M_1 M_2$.
- Let $f = f_i$ be the modular form

$$f(z) := \sum_{(n,\Sigma)=1} a(n,g)q^n.$$

 $D_{f}(\gamma, s)$

• The naive symmetric square *L*-function is as follows:

Anwesh Ray (UBC)

I.T and congruences for the Sym

	< [E
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	16 / 22

• Define $\theta_{\chi}(z) = \sum_{j} \chi(j) \exp(2\pi i j^2 z)$, which is a modular form of weight 1/2 and level $4c_{\chi}^2$.

3

- Define $\theta_{\chi}(z) = \sum_{j} \chi(j) \exp(2\pi i j^2 z)$, which is a modular form of weight 1/2 and level $4c_{\chi}^2$.
- It turns out that $\theta_{\chi}(z)\Phi(z,\chi,s)$ is a (non-holomorphic) modular form of weight k, trivial character, and level $N_{\chi} := \operatorname{lcm}(N, c_{\chi}^2)$.

- Define $\theta_{\chi}(z) = \sum_{j} \chi(j) \exp(2\pi i j^2 z)$, which is a modular form of weight 1/2 and level $4c_{\chi}^2$.
- It turns out that $\theta_{\chi}(z)\Phi(z,\chi,s)$ is a (non-holomorphic) modular form of weight k, trivial character, and level $N_{\chi} := \text{lcm}(N, c_{\chi}^2)$.
- The following formula is due to Shimura

$$(4\pi)^{-s/2}\Gamma(s/2)D_f(\chi,s) = \langle f, \theta_{\overline{\chi}}(z)\Phi(z,\overline{\chi},s)\rangle_{N_{\chi}}.$$

- Define $\theta_{\chi}(z) = \sum_{j} \chi(j) \exp(2\pi i j^2 z)$, which is a modular form of weight 1/2 and level $4c_{\chi}^2$.
- It turns out that $\theta_{\chi}(z)\Phi(z,\chi,s)$ is a (non-holomorphic) modular form of weight k, trivial character, and level $N_{\chi} := \text{lcm}(N, c_{\chi}^2)$.
- The following formula is due to Shimura

$$(4\pi)^{-s/2}\Gamma(s/2)D_f(\chi,s)=\langle f,\theta_{\overline{\chi}}(z)\Phi(z,\overline{\chi},s)\rangle_{N_{\chi}}.$$

 For an odd integer n in the range 1 ≤ n ≤ k − 1, set *H*_{χ̄}(n) := θ_{χ̄}(z)Φ(z, χ̄, n). Sturm has shown that *H*_{χ̄}(n) is a nearly holomorphic modular form of level N_χ, weight k, and trivial character.

The algebraic inner product

Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	17 / 22

4 D N 4 B N 4 B N 4 B N

-

• Let \mathbb{T} denote the ring generated by the Hecke operators T_{ℓ}, U_q, U_p acting on $S_k(N, \mathcal{O})$.

3

- Let \mathbb{T} denote the ring generated by the Hecke operators T_{ℓ}, U_q, U_p acting on $S_k(N, \mathcal{O})$.
- Then the eigenform f determines a ring homomorphism T → O, sending a Hecke-operator T ∈ T to the T-eigenvalue of f. Set P to denote the kernel of this homorphism. There is a unique maximal ideal m of T that contains P and the maximal ideal of O.

- Let \mathbb{T} denote the ring generated by the Hecke operators T_{ℓ}, U_q, U_p acting on $S_k(N, \mathcal{O})$.
- Then the eigenform f determines a ring homomorphism T → O, sending a Hecke-operator T ∈ T to the T-eigenvalue of f. Set P to denote the kernel of this homorphism. There is a unique maximal ideal m of T that contains P and the maximal ideal of O.
- There is a canonical duality of $\mathbb{T}_{\mathfrak{m}}$ -modules between $S_k(N, \mathcal{O})_{\mathfrak{m}}$ and $\mathbb{T}_{\mathfrak{m}}$ defined by the form $S_k(N, \mathcal{O})_{\mathfrak{m}} \times \mathbb{T}_{\mathfrak{m}} \to \mathcal{O}$ mapping $(s, t) \mapsto a(1, s|t) \in \mathcal{O}$.

→ 3 → 3

	< E	□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶	≣
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	18/22

• Since $\mathbb{T}_{\mathfrak{m}}$ is Gorenstein, there is an isomorphism of $\mathbb{T}_{\mathfrak{m}}$ -modules $\iota: \mathbb{T}_{\mathfrak{m}} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{O}}(\mathbb{T}_{\mathfrak{m}}, \mathcal{O}) \xrightarrow{\sim} S_k(N, \mathcal{O}).$

• • • • • • •

포카 포

• Since $\mathbb{T}_{\mathfrak{m}}$ is Gorenstein, there is an isomorphism of $\mathbb{T}_{\mathfrak{m}}$ -modules $\iota: \mathbb{T}_{\mathfrak{m}} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{O}}(\mathbb{T}_{\mathfrak{m}}, \mathcal{O}) \xrightarrow{\sim} S_k(N, \mathcal{O}).$

 \bullet Define an algebraic pairing (\cdot, \cdot)

Anwesh Ray (UBC)

 $(\cdot,\cdot)_{\mathcal{N}}:S_k(\mathcal{N},\mathcal{O}) imes S_k(\mathcal{N},\mathcal{O}) o\mathcal{O}$ by $(v,w):=a\left(1,v_{|\iota(w)}
ight).$

• Since $\mathbb{T}_{\mathfrak{m}}$ is Gorenstein, there is an isomorphism of $\mathbb{T}_{\mathfrak{m}}$ -modules $\iota: \mathbb{T}_{\mathfrak{m}} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{O}}(\mathbb{T}_{\mathfrak{m}}, \mathcal{O}) \xrightarrow{\sim} S_k(N, \mathcal{O}).$

 \bullet Define an algebraic pairing (\cdot, \cdot)

$$(\cdot,\cdot)_N:S_k(N,\mathcal{O})\times S_k(N,\mathcal{O})\to \mathcal{O}$$

by $(v, w) := a(1, v_{|\iota(w)}).$

• Define the period of f at level N as $\Omega_N = \frac{\{f,f\}_N}{(f,f)_N}$.

• Since $\mathbb{T}_{\mathfrak{m}}$ is Gorenstein, there is an isomorphism of $\mathbb{T}_{\mathfrak{m}}$ -modules $\iota : \mathbb{T}_{\mathfrak{m}} \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{O}}(\mathbb{T}_{\mathfrak{m}}, \mathcal{O}) \xrightarrow{\sim} S_k(N, \mathcal{O}).$

• Define an algebraic pairing (\cdot, \cdot)

$$(\cdot,\cdot)_N:S_k(N,\mathcal{O})\times S_k(N,\mathcal{O})\to \mathcal{O}$$

by $(v, w) := a(1, v_{|\iota(w)}).$

- Define the period of f at level N as $\Omega_N = \frac{\{f,f\}_N}{(f,f)_N}$.
- In order to relate the *p*-adic L-function of *f* to the imprimitive *p*-adic L-function associated to *g*, we show that Ω_N = uΩ_M for a unit u ∈ O.

	< [□▶ ▲圖▶ ▲圖▶ ▲圖▶	E
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	19/22

• Recall that $H_{\chi}(n) = \theta_{\chi}(z)\Phi(z,\chi,n).$

Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	19/22

• Recall that $H_{\chi}(n) = \theta_{\chi}(z)\Phi(z,\chi,n).$

Set

$$\widetilde{H}_{\chi}(n) = \frac{\Gamma((n+1)/2)}{\pi^{(1+n)/2}} p^{m_{\chi}(3-2k+2n)/2} \cdot \frac{\sqrt{Cp^{m_{\chi}}}}{G(\chi)} \cdot H_{\chi}(n) \circ W_{N_{\chi}},$$

it follows from results of Schmidt that $\widetilde{H}_{\chi}(n)$ has p-integral Fourier coefficients.

Proposition

Let e denote Hida's ordinary projection operator, acting on $S(N, \mathcal{O}) \otimes \mathbb{Q}$. Then $e\widetilde{H}_{\chi}(n)^{hol}$ has p-integral Fourier coefficients.

	٠	▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □	Ξ.	$\mathcal{O}\mathcal{A}\mathcal{O}$
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021		20 / 22

• Write $\chi = \psi \eta$, where ψ has conductor prime to p and η has p-power conductor.

- Write $\chi = \psi \eta$, where ψ has conductor prime to p and η has p-power conductor.
- Putting everything together, we have that

$$(f, e\widetilde{H}_{\chi}(n)^{\text{hol}})_{N} = \left(\frac{p^{n-1}}{\psi(p)\alpha_{p}^{2}}\right)^{m_{\chi}} \cdot \Gamma(n) \cdot G(\bar{\eta}) \cdot \frac{D_{f}(\chi, n)}{\pi^{n}\Omega}$$

- Write $\chi = \psi \eta$, where ψ has conductor prime to p and η has p-power conductor.
- Putting everything together, we have that

$$(f, e\widetilde{H}_{\chi}(n)^{\text{hol}})_N = \left(\frac{p^{n-1}}{\psi(p)\alpha_p^2}\right)^{m_{\chi}} \cdot \Gamma(n) \cdot G(\bar{\eta}) \cdot \frac{D_f(\chi, n)}{\pi^n \Omega}.$$

• The functional $S_k(N, \mathcal{O}) \to \mathcal{O}$ given by $(\cdot, e\widetilde{H}_{\chi}(n)^{\text{hol}})_N$ is \mathcal{O} -linear and continuous.

- Write $\chi = \psi \eta$, where ψ has conductor prime to p and η has p-power conductor.
- Putting everything together, we have that

$$(f, e\widetilde{H}_{\chi}(n)^{\text{hol}})_N = \left(\frac{p^{n-1}}{\psi(p)\alpha_p^2}\right)^{m_{\chi}} \cdot \Gamma(n) \cdot G(\bar{\eta}) \cdot \frac{D_f(\chi, n)}{\pi^n \Omega}.$$

- The functional $S_k(N, \mathcal{O}) \to \mathcal{O}$ given by $(\cdot, e\widetilde{H}_{\chi}(n)^{hol})_N$ is \mathcal{O} -linear and continuous.
- Therefore, if f_1 and f_2 are p-congruent, it follows that

$$(f_1, e\widetilde{H}_{\chi}(n)^{hol})_N \equiv (f_2, e\widetilde{H}_{\chi}(n)^{hol})_N \mod \mathfrak{p}.$$

	< [≣ ୬୍ବ୍
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	21/22

We obtain the congruence

$$\begin{pmatrix} \frac{p^{n-1}}{\psi(p)\alpha_p^2} \end{pmatrix}^{m_{\chi}} \cdot \Gamma(n) \cdot G(\bar{\eta}) \cdot \frac{D_{f_1}(\chi, n)}{\pi^n \Omega} \\ \equiv u \left(\frac{p^{n-1}}{\psi(p)\alpha_p^2} \right)^{m_{\chi}} \cdot \Gamma(n) \cdot G(\bar{\eta}) \cdot \frac{D_{f_2}(\chi, n)}{\pi^n \Omega} \mod \mathfrak{p}.$$

Corollary

We have $L_p(Sym^2(f_1) \otimes \psi) \equiv uL_p(Sym^2(f_2) \otimes \psi) \pmod{\mathfrak{p}}$, where u is a p-adic unit the congruence is that of elements in the completed group algebra $\mathcal{O}[[\mathbb{Z}_p^{\times}]]]$.

	٩ - ١	미 🛛 🖉 🕨 🤇 분 🗸 분 🕨	≡ ∽へぐ
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	December 6, 2021	21 / 22

Thank you!

	4	< 🗗 🕨 🖓	(≣))	◆夏≯	æ	୬୯୯
Anwesh Ray (UBC)	I.T and congruences for the Sym ²	Dece	mber	6, 2021		22 / 22