Fields Number theory Seminar

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic

The Euler Characteris-

E fixed p

p fixed E

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

University of British Columbia anweshray@math.ubc.ca

August 17, 2021

Anwesh Ray

Introduction

Iwasawa theory of Elliptic

The Euler Characteris

E fixed p

p fixed E

Joint with Debanjana Kundu (PIMS/UBC).

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

varies

- Arithmetic statistics (of elliptic curves) is the study of the average behaviour of certain invariants associated to elliptic curves.
- It is conjectured that half of elliptic curves have rank 0 and the other half have rank 1.
- In particular, 0 percent of all elliptic curves are expected to have rank ≥ 2.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed *E* varies

- Some results in this direction are due to Bhargava and Shankar, who study the average size of Selmer groups.
- As a result of analyzing the average size of the 5-Selmer group, they are able to show that
 - 1 the average rank of elliptic curves is less than .885 (conjectured to be 0.5).
 - 2 Less than 20% of elliptic curves have rank ≥ 2 (conjectured to be 0%).
 - 3 At least 20% of elliptic curves have rank 0 (conjectured to be 50%).

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

- Iwasawa theory is concerned with the structure of certain Galois modules associated to elliptic curves.
- These Galois modules arise from Selmer groups, and the study of their structure is the primary motivation of the subject.
- Unlike the Selmer groups that Bhargava-Shankar work with, the Selmer groups in Iwasawa theory are defined over certain infinite towers of number fields.

Elliptic curves and Galois Representations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed E

■ Let E be an elliptic curve over \mathbb{Q} .

- Fix a prime p, denote by $E[p^n]$ the p^n torsion subgroup of $E(\bar{\mathbb{Q}})$.
- The p-adic Tate-module $T_p(E)$ is the inverse limit

$$T_p(E) = \varprojlim_n E[p^n],$$

where the inverse limit is taken w.r.t. multiplication by p maps $\times p: E[p^{n+1}] \to E[p^n]$.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

- The Tate-module $T_p(E)$ is a free \mathbb{Z}_p -module of rank 2, and is equipped with an action of the absolute Galois group $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.
- To the pair (E, p), the Galois action on the Tate-module is encoded by a Galois representation:

$$\rho_{E,p}: \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{GL}_2(\mathbb{Z}_p).$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E

We study two interrelated problems:

- For a fixed elliptic curve E we study invariants associated to the p-adic Galois representation $\rho_{E,p}$ as p ranges over all primes.
- For a fixed prime p, we study the average behaviour of invariants associated to $\rho_{E,p}$ as E ranges over all elliptic curves over \mathbb{Q} .

The Cyclotomic \mathbb{Z}_p -extension

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

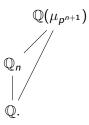
Iwasawa theory of Elliptic Curves

The Euler Characteris

E fixed p

p fixed *E* varies

- Let *p* be a fixed prime number.
- For $n \in \mathbb{Z}_{\geq 1}$, let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted



 \blacksquare Set $\mathbb{Q}_0 := \mathbb{Q}$.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed *E* varies

- Given a number field K, let K_n be the composite $K \cdot \mathbb{Q}_n$.
- The tower of number fields $K = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n \subseteq \ldots$ is called the cyclotomic tower.
- The field K_{cyc} is taken to be the union

$$K_{\mathsf{cyc}} := \bigcup_{n \geq 1} K_n.$$

The Galois group $Gal(K_{cyc}/K)$ is isomorphic to \mathbb{Z}_p .

Early Investigations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p

p fixed *E* varies ■ Iwasawa's early ivestigations led him to study the variation of *p*-class groups of K_n as $n \to \infty$.

■ For $n \ge 1$, set $\mathcal{A}_n(K)$ to denote the p-primary part of the class group of K_n

$$A_n(K) := Cl(K_n)[p^{\infty}].$$

 \blacksquare Iwasawa showed that there are invariants μ, λ, ν such that

$$\#\mathcal{A}_n(K) = p^{\mu p^n + \lambda n + \nu}$$

for large values of n.

lwasawa's approach

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

- There are natural maps $\mathcal{A}_{n+1}(K) \to \mathcal{A}_n(K)$ and the inverse limit $\mathcal{A}_{\text{cyc}}(K) := \varprojlim_n \mathcal{A}_n(K)$ is a module over $\Gamma_K := \text{Gal}(K_{\text{cyc}}/K)$.
- Iwasawa introduced the completed algebra $\Lambda := \varprojlim_n \mathbb{Z}_p[\mathsf{Gal}(K_n/K)] \simeq \mathbb{Z}_p[[x]].$
- He showed that $\mathcal{A}_{\text{cyc}}(K)$ is a finitely generated torsion $\mathbb{Z}_p[[x]]$ -module and his theorem is a consequence of the structure theory of such modules.

Vanishing of the μ -invariant

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed E

Theorem (Fererro-Washington)

Let K be an abelian extension of \mathbb{Q} , the Iwasawa μ -invariant $\mu_{K,p}$ vanishes.

■ The same is expected for arbitrary number field extensions K/\mathbb{Q} .

Iwasawa theory of Elliptic Curves

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

- Mazur initiated the Iwasawa theory of elliptic curves over \mathbb{Q} .
- Throughout, we let E be an elliptic curve over \mathbb{Q} with good ordinary reduction at p.
- For a fixed elliptic curve E and prime p, Mazur studied the growth of rank $E(\mathbb{Q}_n)$ as $n \to \infty$.

Selmer groups

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed *E* varies

- The *p*-primary torsion group $E[p^{\infty}] \subset E(\bar{\mathbb{Q}})$ admits an action of the absolute Galois group $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$.
- For each number field extension F of \mathbb{Q} , the Selmer group $\mathrm{Sel}_{p^{\infty}}(E/F)$ consists of Galois cohomology classes

$$f \in H^1(\mathsf{Gal}\left(\bar{\mathbb{Q}}/F\right), E[p^\infty])$$

satisfying suitable local conditions.

It fits into a short exact sequence

$$0 \to E(F) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to \mathsf{Sel}_{p^\infty}(E/F) \to \mathrm{III}(E/F)[p^\infty] \to 0.$$

Selmer groups

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed E

 \blacksquare The Selmer group over \mathbb{Q}_{cyc} is taken to be the direct limit

$$\mathsf{Sel}_{p^\infty}(E/\mathbb{Q}_{\mathsf{cyc}}) := \varinjlim_n \mathsf{Sel}_{p^\infty}(E/\mathbb{Q}_n).$$

■ The Pontryagin dual $\mathfrak{M}_{\operatorname{cyc}} := \operatorname{Hom}_{\operatorname{cnts}}(\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}}), \mathbb{Q}_p/\mathbb{Z}_p)$ is a finitely generated and torsion $\Lambda \simeq \mathbb{Z}_p[[x]]$ module.

Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p

p fixed E

■ By the structure theory of $\mathbb{Z}_p[[x]]$ modules, up to a pseudoisomorphism, $\mathfrak{M}_{\text{cvc}}$ decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{p}[[x]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{p}[[x]]/(f_{j}(x))\right).$$

■ The μ and λ invariants are as follows

$$\mu_{E,p} := \sum_{j} \mu_{j} \text{ and } \lambda_{E,p} := \sum_{j} \deg f_{j}(x).$$

Greenberg's Conjecture

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed E

Conjecture (Greenberg)

Suppose that E[p] is irreducible as a Galois module, then, $\mu_{E,p}=0$.

- For a fixed elliptic curve $E_{/\mathbb{Q}}$ without complex multiplication, it follows from Serre's Open image theorem that E[p] is irreducible as a Galois module for all but finitely many primes.
- Mazur showed that if E is semistable, then E[p] is irreducible for p > 11.
- For a fixed prime p, Duke showed that E[p] is irreducible as a Galois module for 100% of elliptic curves $E_{/\mathbb{Q}}$.

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

- The λ -invariant satisfies the inequality $\lambda_{E,p} \geq \operatorname{rank} E(\mathbb{Q})$.
- We would like to model the average behaviour of the lwasawa invariants μ and λ in two cases:
 - 1 when E is fixed and p-varies,
 - 2 when p is fixed and E varies.

The Euler Characteristic

E fixed varies

p fixed *E* varies ■ Consider the following result of R. Greenberg:

Theorem (R. Greenberg)

Let E be an elliptic curve with rank $E(\mathbb{Q})=0$. Then the following equivalent conditions are satisfied for 100% of the ordinary primes p:

$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = 0$,

■
$$\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}})=0.$$

E fixed varies

p fixed E

■ The result may be generalized various ways, for instance:

Theorem (D.Kundu, AR)

Let E be an elliptic curve with rank $E(\mathbb{Q})=0$. Then the following equivalent conditions are satisfied for all but finitely many primes p at which E has supersingular reduction:

- $\blacksquare \ \mu_{E,p}^{\pm} = 0 \ and \ \lambda_{E,p}^{\pm} = 0,$
- $\blacksquare \operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}}) = 0.$
- Here, $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}})$ are Kobayashi's signed Selmer groups and $\mu_{E,p}^{\pm}, \lambda_{E,p}^{\pm}$ the signed Iwasawa invariants.

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed *E* varies

- Recall that $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q})$, the Selmer group $\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}})$ admits an action of Γ .
- There is a natural map

$$\Phi: \mathsf{Sel}(E/\mathbb{Q}_{\mathsf{cyc}})^{\Gamma} o \mathsf{Sel}(E/\mathbb{Q}_{\mathsf{cyc}})_{\Gamma}.$$

■ The (generalized) Euler characteristic

$$\chi(\Gamma, E[p^{\infty}]) := \frac{\# \ker \Phi}{\# \operatorname{cok} \Phi}.$$

Relationship with Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed E

Theorem

The truncated Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is an integer and the following conditions are equivalent:

- \blacksquare $\mu_{E,p} = 0$ and $\lambda_{E,p} = \operatorname{rank} E(\mathbb{Q})$.

p-adic Birch and Swinnerton-Dyer Conjecture

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic

The Euler Characteristic

E fixed p varies

p fixed E

■ Let E be an elliptic curve over \mathbb{Q} and assume that $\mathrm{III}(E/\mathbb{Q})[p^{\infty}]$ is finite.

Theorem (Perrin-Riou, Schneider)

The Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is equal to the following formula, up to a p-adic unit

$$\frac{\mathcal{R}_{p}(E/\mathbb{Q})}{p^{\mathsf{rank}\,E(\mathbb{Q})}}\times\frac{\#\mathrm{III}(E/\mathbb{Q})[p^{\infty}]\times\prod_{\ell}c_{\ell}(E)\times\left(\#\widetilde{E}(\mathbb{F}_{p})\right)^{2}}{\left(\#E(\mathbb{Q})[p^{\infty}]\right)^{2}}.$$

Short-hand notation

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

p fixed E

Theorem (Perrin-Riou, Schneider)

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times \coprod_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{(\#E(\mathbb{Q})[p^{\infty}])^2}.$$

- $R_{E,p}$ is the order of the *p*-primary part of the *p*-adic regulator of E/\mathbb{Q} ,
- $\coprod_{E,p}$ the order of the *p*-primary part of the Tate Shafarevich group is E,
- $\tau_{E,p}$ the order of the *p*-primary part of the Tamagawa product $\prod_{\ell} c_{\ell}(E)$,
- $\bullet \alpha_{E,p} := \left(\#\tilde{E}(\mathbb{F}_p)[p^{\infty}]\right)^2.$

E fixed p varies

p fixed *E* varies

Assume that p is an ordinary prime. Have the following implications:

$$\begin{split} R_{E,p} &= 1, \coprod_{E,p} = 1, \tau_{E,p} = 1, \alpha_{E,p} = 1 \\ \Rightarrow &\chi(\Gamma, E[p^{\infty}]) = 1 \\ \Leftrightarrow &\mu_{E,p} = 0 \text{ and } \lambda_{E,p} = \operatorname{rank} E(\mathbb{Q}). \end{split}$$

Elliptic curve E fixed and the prime p varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed *E* varies

■ Fix *E* and let *p* vary. We expect that for 100% of the primes,

$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = \operatorname{rank} E(\mathbb{Q})$.

■ This is the case provided $R_{E,p} = 1$ for 100% of primes p. Computational evidence shows that this is to be expected.

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E

- There are analogues in the case when *E* has supersingular reduction at *p*.
- We are led to make the following conjecture:

Conjecture

Let E be a fixed elliptic curve over \mathbb{Q} . For 100% of the primes p at which E has good ordinary reduction (resp. supersingular), $\mu=0$ and $\lambda=\mathrm{rank}\,E(\mathbb{Q})$ (resp. $\mu^+=\mu^-=0$ and $\lambda^+=\lambda^-=\mathrm{rank}\,E(\mathbb{Q})$).

Fixed prime p and E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed varies

p fixed E

Fix a prime p.

lacktriangle Recall that any elliptic curve E over $\mathbb Q$ admits a unique Weierstrass equation

$$E: y^2 = x^3 + Ax + B$$

where A, B are integers and $gcd(A^3, B^2)$ is not divisible by any twelfth power.

E fixed varies

p fixed E

lacktriangle The height of E is defined as follows:

$$H(E) := \max\left(|A|^3, B^2\right).$$

■ Let $\mathcal{E}(X)$ of elliptic curves of height < X.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed varies

p fixed E varies

- Fix a prime $p \ge 5$.
- Let $\mathcal{E}_p(X) \subset \mathcal{E}(X)$ be the subset of elliptic curves with
 - 1 rank $E(\mathbb{Q}) = 0$,
 - 2 good ordinary reduction at p,
 - **3** Either $\mu_{E,p} > 0$, or $\lambda_{E,p} > 0$ (or both).

Theorem (D. Kundu, AR)

Let $p \ge 5$ be a fixed prime. We have that:

$$\limsup_{X \to \infty} \frac{\mathcal{E}_p(X)}{\mathcal{E}(X)} < f_0(p) + \left(\zeta(p) - 1\right) + \zeta(10) \cdot \frac{d(p)}{p^2}.$$

The Euler Characteristic

E fixed varies

p fixed E

- Here, $f_0(p)$ is the proportion of elliptic curves E of rank 0 for which $p \mid \# \coprod (E/\mathbb{Q})$.
- Delaunay has shown that according to Cohen-Lenstra heuristics, one should expect

$$f_0(p) = 1 - \prod_{j=1}^{\infty} \left(1 - \frac{1}{p^{2j-1}} \right) = \frac{1}{p} + \frac{1}{p^3} - \frac{1}{p^4} + \frac{1}{p^5} - \frac{1}{p^6} \dots$$

■ These numbers decrease rapidly as p increases, for instance, $f_0(2) \approx 0.58$, $f_0(3) \approx 0.36$ and $f_0(5) \approx 0.21$.

E fixed varies

- Here, d(p) be the number of pairs $\kappa = (a, b) \in \mathbb{F}_p \times \mathbb{F}_p$ such that
 - 1 $\Delta(\kappa) \neq 0$.
 - **2** $E_{\kappa}: y^2 = x^3 + ax + b$ has a point over \mathbb{F}_p of order p.
- The number d(p) is closely related to the Kronecker class number of 1-4p. Computations show that the values $d(p)/p^2$ tend to decrease as p increases, however, there is much oscillation in the data.

Values of $d(p)/p^2$ for $7 \le p < 150$

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic

The Euler Characteris tic

tic E fixed p

р	$d(p)/p^2$	р	$d(p)/p^2$
7	0.0816326530612245	71	0.0208292005554453
11	0.0413223140495868	73	0.0270219553387127
13	0.0710059171597633	79	0.0374939913475405
17	0.0276816608996540	83	0.0178545507330527
19	0.0581717451523546	89	0.0222194167403106
23	0.0415879017013233	97	0.0255074928260176
29	0.0332936979785969	101	0.00980296049406921
31	0.0312174817898023	103	0.0288434348194929
37	0.0306793279766253	107	0.00925845051969604
41	0.0118976799524093	109	0.0181802878545577
43	0.0567874526771228	113	0.0263137285613595
47	0.0208239022181983	127	0.0169260338520677
53	0.0277678889284443	131	0.0189382903094225
59	0.0166618787704683	137	0.0108689860940913
61	0.0349368449341575	139	0.0142849748977796
67	0.0147026063711294	149	0.0133327327597856

Elliptic curves with large λ -invariant

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introductio

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p

- The λ -invariant $\lambda_{E,p}$ gives an upper bound for rank $E(\mathbb{Q}_n)$ as $n \to \infty$.
- On the other hand, the rank boundedness Conjecture asks if there exist elliptic curves $E_{/\mathbb{Q}}$ with arbitrarily large Mordell-Weil rank.
- Given any prime p, Greenberg showed that there exist elliptic curves $E_{/\mathbb{Q}}$ for which $\mu_{E,p} + \lambda_{E,p}$ is arbitrarily large.

Lower Bounds

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed varies

p fixed E

Theorem (D. Kundu, AR)

Let $p \geq 5$ be a prime and $N \in \mathbb{Z}_{\geq 1}$. There is an explicit lower bound $\mathfrak{d}_{p,N} > 0$ for the density of elliptic curves $E_{/\mathbb{Q}}$ for which

$$\mu_{E,p} + \lambda_{E,p} \geq N.$$

- The quantity $\mathfrak{d}_{p,N}$ is given by some explicit infinite sums, which gets smaller as either N or p increases.
- We do assume the finiteness of $\coprod (E/\mathbb{Q})[p^{\infty}]$ in our arguments.
- On assuming Greenberg's conjecture, the inequality $\mu_{E,p} + \lambda_{E,p} \geq N$ may be replaced with $\lambda_{E,p} \geq N$.

Recent Work

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

tic E fixed p

- The results have been extended to anticyclotomic \mathbb{Z}_p -extensions, joint with J.Hatley and D.Kundu. Here, results are proved when the imaginary quadratic field is allowed to vary.
- In joint work with L.Beneish and D.Kundu, we use techniques in Iwasawa theory to study arithmetic statistics for rank jumps and growth of Selmer groups of elliptic curves in $\mathbb{Z}/p\mathbb{Z}$ -extensions.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic

Elliptic Curves

The Euler Characteris

E fixed p

p fixed E

Thank you!