Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Euler characteristics in Iwasawa theory and their congruences

Anwesh Ray

University of British Columbia

anweshray@math.ubc.ca

March 10, 2021

Eul	er	ch	ara	C-
ter	ist	ics	an	d
co	ng	rue	nce	s

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Let *p* be a prime number.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Anwesh Ray

Introduction

- lwasawa theory of Elliptic Curves
- Euler Characteristics in Iwasawa theory
- Statement of Results

- Let *p* be a prime number.
- Iwasawa theory is concerned with the structure of certain Galois modules arising from arithmetic.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- Let *p* be a prime number.
- Iwasawa theory is concerned with the structure of certain Galois modules arising from arithmetic.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 These modules are defined over certain infinite Galois extensions of Q.

The Cyclotomic \mathbb{Z}_p -extension

Euler charac- teristics and congruences
Anwesh Ray Introduction
lwasawa theory of Elliptic Curves
Euler Char- acteristics in Iwasawa theory
Statement of Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Cyclotomic \mathbb{Z}_p -extension

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • Let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted

 $\mathbb{Q}(\mu_{p^{n+1}})$ \mathbb{Q}_n

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

Eul	er	ch	ara	C-
ter	ist	ics	an	d
co	ng	rue	nce	s

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics ir Iwasawa theory

Statement of Results The tower of number fields $\mathbb{Q} = \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \ldots$ is called the cyclotomic tower.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- The tower of number fields $\mathbb{Q} = \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \ldots$ is called the cyclotomic tower.
- The field \mathbb{Q}_{cyc} is taken to be the union

$$\mathbb{Q}_{\mathsf{cyc}} := igcup_{n\geq 1} \mathbb{Q}_n.$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Galois group $Gal(\mathbb{Q}_{cyc}/\mathbb{Q})$ is isomorphic to \mathbb{Z}_p .

Early Investigations

Early Investigations

Euler characteristics and congruences

Anwesh Ray

Introduction

- Iwasawa theory of Elliptic Curves
- Euler Characteristics in Iwasawa theory
- Statement of Results

- Iwasawa's early ivestigations led him to study the variation of *p*-class groups of Q_n as n → ∞.
- For n ≥ 1, set A_n to denote the p-primary part of the class group of Q_n

$$\mathcal{A}_n := \mathsf{Cl}(\mathbb{Q}_n)[p^\infty].$$

Early Investigations

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- Iwasawa's early ivestigations led him to study the variation of *p*-class groups of Q_n as n → ∞.
- For n ≥ 1, set A_n to denote the p-primary part of the class group of Q_n

$$\mathcal{A}_n := \mathsf{Cl}(\mathbb{Q}_n)[p^\infty].$$

 \blacksquare Iwasawa showed that there are invariants $\mu,\lambda,\nu\geq 0$ such that

$$\#\mathcal{A}_n = p^{\mu p^n + \lambda n + \nu}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

for large values of n.

- H		1			- I.
	wasawa	S	ар	proa	Ch

◆□▶▲@▶▲曲▶ ▲■▼ ▲○♥

Iwasawa's approach

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • There are natural maps $\mathcal{A}_{n+1} \to \mathcal{A}_n$ and the inverse limit $\mathcal{A}_{\infty} := \varprojlim_n \mathcal{A}_n$ is a module over $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q}).$

Iwasawa's approach

Euler characteristics and congruences

Anwesh Ray

Introduction

- Iwasawa theory of Elliptic Curves
- Euler Characteristics in Iwasawa theory
- Statement of Results

There are natural maps $\mathcal{A}_{n+1} \to \mathcal{A}_n$ and the inverse limit $\mathcal{A}_{\infty} := \varprojlim_n \mathcal{A}_n$ is a module over $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q}).$

- Iwasawa introduced the completed algebra
 - $\Lambda := \varprojlim_n \mathbb{Z}_p[\mathsf{Gal}(\mathbb{Q}_n/\mathbb{Q})] \simeq \mathbb{Z}_p[[x]].$

Iwasawa's approach

Euler characteristics and congruences

Anwesh Ray

Introduction

- Iwasawa theory of Elliptic Curves
- Euler Characteristics in Iwasawa theory
- Statement of Results

- There are natural maps $\mathcal{A}_{n+1} \to \mathcal{A}_n$ and the inverse limit $\mathcal{A}_{\infty} := \varprojlim_n \mathcal{A}_n$ is a module over $\Gamma := \operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q}).$
- Iwasawa introduced the completed algebra

$$\Lambda := \varprojlim_n \mathbb{Z}_p[\mathsf{Gal}(\mathbb{Q}_n/\mathbb{Q})] \simeq \mathbb{Z}_p[[x]].$$

■ He showed that A_∞ is a finitely generated torsion Z_p[[x]]-module and his theorem is a consequence of the structure theory of such modules.

Euler charac- teristics and congruences
Anwesh Ray
Introduction
theory of Elliptic Curves
Euler Char- acteristics in Iwasawa theory
Statement of Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results ■ Greenberg and Mazur initiated the Iwasawa theory of elliptic curves over Q.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- Greenberg and Mazur initiated the Iwasawa theory of elliptic curves over ℚ.
- Throughout, we let *E* be an elliptic curve over \mathbb{Q} with good ordinary reduction at *p*.

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- Greenberg and Mazur initiated the Iwasawa theory of elliptic curves over ℚ.
- Throughout, we let E be an elliptic curve over \mathbb{Q} with good ordinary reduction at p.
- They studied the variation of Selmer groups as one goes up the tower.

Some notation

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < で</p>

Some notation

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • For any abelian group M, set $M[p^n] := \ker(M \xrightarrow{p^n} M)$ and $M[p^{\infty}] := \bigcup_{n>1} M[p^n]$.

Some notation

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • For any abelian group M, set $M[p^n] := \ker(M \xrightarrow{p^n} M)$ and $M[p^{\infty}] := \bigcup_{n>1} M[p^n]$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Selr	ner	grou	ips
------	-----	------	-----

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results ■ For each number field extension F of Q, the Selmer group Sel_p∞(E/F) consists of Galois cohomology classes

$$f \in H^1(\bar{F}/F, E[p^\infty])$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

satisfying suitable local conditions.

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results ■ For each number field extension F of Q, the Selmer group Sel_p∞(E/F) consists of Galois cohomology classes

$$f \in H^1(\bar{F}/F, E[p^\infty])$$

satisfying suitable local conditions.

It fits into a short exact sequence

 $0 \to E(F) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/F) \to \operatorname{III}(E/F)[p^{\infty}] \to 0.$

Selr	ner	grou	ips
------	-----	------	-----

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • The Selmer group over \mathbb{Q}_{cyc} is taken to be the direct limit

$$\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{n}).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • The Selmer group over \mathbb{Q}_{cyc} is taken to be the direct limit Sel_p $_{\infty}(E/\mathbb{Q}_{cyc}) := \varinjlim \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_n).$

The Pontryagin dual

 *M*_∞ := Hom_{cnts}(Sel_{p∞}(E/Q_{cyc}), Q_p/Z_p) is a finitely generated and torsion Λ ≃ Z_p[[x]] module.

Iwasawa Invariants

Euler charac-
teristics and
tensues and
congruences
AI. D
Anwesn Ray
Introduction
miloudetion
Iwasawa
theory of
Elliptic
Ciliptic
Curves
Euler Char-
actorictics in
actenstics in
Iwasawa
theory
chicory
C
Statement of
Results

Iwasawa Invariants

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results ■ By the structure theory of Z_p[[x]] modules, up to a pseudoisomorphism, M_∞ decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{p}[[x]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{p}[[x]]/(f_{j}(x))\right).$$

Iwasawa Invariants

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results ■ By the structure theory of Z_p[[x]] modules, up to a pseudoisomorphism, M_∞ decomposes into cyclic-modules:

$$\left(\bigoplus_{j}\mathbb{Z}_{\rho}[[x]]/(p^{\mu_{j}})\right)\oplus\left(\bigoplus_{j}\mathbb{Z}_{\rho}[[x]]/(f_{j}(x))\right).$$

 \blacksquare The μ and λ invariants are as follows

$$\mu_E := \sum_j \mu_j \text{ and } \lambda_E := \sum_j \deg f_j(x).$$

The generalized Euler characteristic

Enders also as a
Euler charac-
teristics and
teristics and
congruences
Anwesh Ray
Introduction
Iwasawa
theony of
theory of
Elliptic
Cumuna
Curves
Euler Char-
acteristics in
lwasawa
·
theory
C
Statement of
Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The generalized Euler characteristic

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results If E(Q) is finite, the cohomology groups
 Hⁱ(Γ, Sel_{p∞}(E/Q_{cyc})) are finite. In this case, the Euler characteristic is as follows:

$$\chi(\Gamma, E) := \prod_{i \ge 0} \left(\# H^i(\Gamma, \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}}))^{(-1)^i}
ight)$$

The generalized Euler characteristic

Euler characteristics and congruences

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results If E(Q) is finite, the cohomology groups
 Hⁱ(Γ, Sel_{p∞}(E/Q_{cyc})) are finite. In this case, the Euler characteristic is as follows:

$$\chi(\Gamma, E) := \prod_{i \ge 0} \left(\# H^i(\Gamma, \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}}))^{(-1)^i} \right)$$

 When E(Q) is infinite, there is a generalization of the above definition and this generalized Euler characteristic is denoted χ_t(Γ, E).

Eulen elseven
Euler charac-
teristics and
teristics and
congruences
Anwesh Rav
In the also at the set
hypepyyp
rvvasavvd
theory of
THE ACT.
EIIIptic
Curves
04.100
Euler Char-
and a start and a start
acteristics in
lwasawa
·······································
theory
c
Statement of
Results
Results

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • Let $a, b \in \mathbb{Q}_p^{\times}$, we write $a \sim b$ if a = ub for a unit $u \in \mathbb{Z}_p^{\times}$.

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- Let $a, b \in \mathbb{Q}_p^{\times}$, we write $a \sim b$ if a = ub for a unit $u \in \mathbb{Z}_p^{\times}$.
- Perrin-Riou and Schneider proved the following *p*-adic analogue of the BSD formula:

$$\chi_t(\Gamma, E) \sim \frac{R_p(E/\mathbb{Q}) \times \#(\mathrm{III}(E/\mathbb{Q})[p])}{\#(E(\mathbb{Q})[p])^2} \times \tau(E).$$

Euler characteristics and congruences

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

- Let $a, b \in \mathbb{Q}_p^{\times}$, we write $a \sim b$ if a = ub for a unit $u \in \mathbb{Z}_p^{\times}$.
- Perrin-Riou and Schneider proved the following *p*-adic analogue of the BSD formula:

$$\chi_t(\Gamma, E) \sim \frac{R_p(E/\mathbb{Q}) \times \#(\mathrm{III}(E/\mathbb{Q})[p])}{\#(E(\mathbb{Q})[p])^2} \times \tau(E).$$

 Here, R_p(E/Q) is the p-adic regulator and τ(E) := ∏ c_l is the Tamagawa product.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Congruent Elliptic Curves

Euler charac
Euler charac-
teristics and
congruences
congracitos
Anwesh Ray
Introduction
miloudetion
huasawa
Twasawa
theory of
Elliptic
Curves
Curves
Euler Chan
Euler Char-
acteristics in
Iwasawa
theony
theory
C
Statement of
Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Congruent Elliptic Curves

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

• Let E_1 and E_2 be elliptic curves over \mathbb{Q} and p a prime. We say that E_1 and E_2 are p-congruent if as Galois modules, $E_1[p]$ is isomorphic to $E_2[p]$.

Congruent Elliptic Curves

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results • Let E_1 and E_2 be elliptic curves over \mathbb{Q} and p a prime. We say that E_1 and E_2 are p-congruent if as Galois modules, $E_1[p]$ is isomorphic to $E_2[p]$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Greenberg and Vatsal showed that if E₁ and E₂ are p-congruent, then the Iwasawa invariants μ and λ for E₁ can be related to the Iwasawa invariants μ and λ for E₂.

Euler charac- teristics and congruences
Anwesh Ray
Introduction Iwasawa
theory of Elliptic Curves
Euler Char- acteristics in Iwasawa
Statement of Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

■ Let *E*₁ and *E*₂ be *p*-ordinary and *p*-congruent. One may ask if the following congruence does hold

 $\chi_t(\Gamma, E_1) \equiv \chi_t(\Gamma, E_2) \mod p?$

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results ■ Let *E*₁ and *E*₂ be *p*-ordinary and *p*-congruent. One may ask if the following congruence does hold

 $\chi_t(\Gamma, E_1) \equiv \chi_t(\Gamma, E_2) \mod p?$

• This is not true, for instance, $E_1 = 37a1$, $E_2 = 1406g1$ are both rank 1 elliptic curves and congruent mod-5. However, computations show that

$$\chi_t(\Gamma, E_1) = 1$$
 and $\chi_t(\Gamma, E_2) = 5^2$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Euler charac- teristics and congruences
Anwesh Ray
Introduction Iwasawa
theory of Elliptic Curves
Euler Char- acteristics in Iwasawa
Statement of Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

 One must account for certain local *L*-factors. There is an explicit set of primes Σ₀ at which either *E*₁ or *E*₂ has bad reduction.

Euler characteristics and congruences

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

 One must account for certain local *L*-factors. There is an explicit set of primes Σ₀ at which either *E*₁ or *E*₂ has bad reduction.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Set $\Phi_{\Sigma_0}(E_i)$ to be the product of local *L*-factors $\prod_{i \in \Sigma_0} L_i(E_i, 1)^{-1}$.

Main Theorem

Euler characteristics and congruences

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Theorem (-, R.Sujatha)

Suppose that p is an odd prime and E_1 and E_2 are p-congruent elliptic curves over \mathbb{Q} with good ordinary reduction at p.

Main Theorem

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics ir Iwasawa theory

Statement of Results

Theorem (-, R.Sujatha)

Suppose that p is an odd prime and E_1 and E_2 are p-congruent elliptic curves over \mathbb{Q} with good ordinary reduction at p.

1 Suppose that rank $E_1(\mathbb{Q}) = \operatorname{rank} E_2(\mathbb{Q})$. Then, we have the following congruence:

 $\Phi_{\Sigma_0}(E_1) \times \chi_t(\Gamma, E_1) \equiv \Phi_{\Sigma_0}(E_2) \times \chi_t(\Gamma, E_2) \mod p.$

Main Theorem

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Theorem (-, R.Sujatha)

Suppose that p is an odd prime and E_1 and E_2 are p-congruent elliptic curves over \mathbb{Q} with good ordinary reduction at p.

1 Suppose that rank $E_1(\mathbb{Q}) = \operatorname{rank} E_2(\mathbb{Q})$. Then, we have the following congruence:

$$\Phi_{\Sigma_0}(E_1) \times \chi_t(\Gamma, E_1) \equiv \Phi_{\Sigma_0}(E_2) \times \chi_t(\Gamma, E_2) \mod p.$$

2 Suppose that rank $E_1(\mathbb{Q}) < \operatorname{rank} E_2(\mathbb{Q})$. Then, we have that

 $\Phi_{\Sigma_0}(E_1) \times \chi_t(\Gamma, E_1) \equiv 0 \mod p.$

Euler charac- teristics and congruences
Anwesh Ray
Introduction Iwasawa
theory of Elliptic Curves
Euler Char- acteristics in Iwasawa
theory Statement of Results
Results

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < で</p>

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

• The Euler characteristic $\chi_t(\Gamma, E_i)$ modulo p is detected by the p-torsion

 $\operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \subset \operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}}).$

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

• The Euler characteristic $\chi_t(\Gamma, E_i)$ modulo p is detected by the p-torsion

 $\operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \subset \operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}}).$

One shows that

 $\mathsf{Sel}(E_i/\mathbb{Q}_{\mathsf{cyc}})[p] \simeq \mathsf{Sel}(E_i[p]/\mathbb{Q}_{\mathsf{cyc}}).$

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics ir Iwasawa theory

Statement of Results • The Euler characteristic $\chi_t(\Gamma, E_i)$ modulo p is detected by the p-torsion

$$\operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \subset \operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}}).$$

One shows that

 $\mathsf{Sel}(E_i/\mathbb{Q}_{\mathsf{cyc}})[p] \simeq \mathsf{Sel}(E_i[p]/\mathbb{Q}_{\mathsf{cyc}}).$

It follows that

 $Sel(E_1/\mathbb{Q}_{cyc})[p]$ $\simeq Sel(E_1[p]/\mathbb{Q}_{cyc})$ $\simeq Sel(E_2[p]/\mathbb{Q}_{cyc})$ $\simeq Sel(E_2/\mathbb{Q}_{cyc})[p].$

C	~	、,	~	~	÷
C	d	V	e	d	ι

- · · ·
Euler charac-
teristics and
congruences
Anwesh Roy
Anwesh Kay
Induced continue.
introduction
Luce and the
iwasawa
theory of
Elliptic
Curves
Euler Char-
acteristics in
Iwasawa
theony
theory
Statement of
Datement of
Results

<ロト < 団ト < 三ト < 三ト 三 のへで</p>

Caveat

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Except

$\mathsf{Sel}(E_i/\mathbb{Q}_{\mathsf{cyc}})[p] \simeq \mathsf{Sel}(E_i[p]/\mathbb{Q}_{\mathsf{cyc}})$

is not true on the nose.

Caveat

Euler characteristics and congruences

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results Except

 $\mathsf{Sel}(E_i/\mathbb{Q}_{\mathsf{cyc}})[p]\simeq\mathsf{Sel}(E_i[p]/\mathbb{Q}_{\mathsf{cyc}})$

is not true on the nose.

 One needs to modify the Selmer groups to account for the auxiliary primes Σ₀;

 $\operatorname{\mathsf{Sel}}^{\Sigma_0}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p]\simeq\operatorname{\mathsf{Sel}}^{\Sigma_0}(E_i[p]/\mathbb{Q}_{\operatorname{cyc}})$

and this is where the auxiliary factors $\prod_{l \in \Sigma_0} L_l(E_i, 1)^{-1}$ come from.

Euler chara	C-
teristics an	d
congruence	es

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

Euler Characteristics in Iwasawa theory

Statement of Results

Thank you.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ