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Motivation

Iwasawa theory is the study of growth patterns of arithmetic objects in
infinite towers of number fields.
Fix a number field K and let p be a prime number.
We consider an infinite tower of number fields coming from cyclotomic
extensions of K .
For n ≥ 1, let µpn be the pn-th roots of unity. Let K (µp∞) be the
infinite Galois extension of K generated by the p-power roots of unity

µp∞ = ∪nµpn .
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For n ∈ Z≥1, let Kn ⊂ K (µp∞) be the extension of K such that
[Kn : K ] = pn.
For n = 0, set K0 := K .
Thus, we have defined an infinite tower of number fields

K ⊂ K1 ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ . . . ,

and let Kcyc := ∪nKn.
Note that Gal(Kn/K ) ≃ Z/pnZ and

Gal(Kcyc/K ) ≃ lim←−
n

Gal(Kn/K ) ≃ lim←−
n

Z/pnZ ≃ Zp.

When we need to emphasize the dependence on p, we use K
(p)
n and

K
(p)
cyc .
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Growth of Mordell–Weil in the cyclotomic tower

Iwasawa studied growth patterns of class groups of Kn as n→∞.
Mazur initiated the Iwasawa theory of elliptic curves.
Kato and Rohlrich showed that if E/Q is an elliptic curve and K/Q is
an abelian extension, then as n→∞, the rank of E (Kn) is bounded.
More generally, if E is an elliptic curve over any number field K , there
are certain conditions under which rankE (Kn) is bounded as n→∞.
We study a similar question for curves of higher genus.
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Curves of genus g > 1

Let X be a nice curve over a number field K , i.e., X is smooth
projective geometrically integral over K . Assume that the genus
g > 1.
By the celebrated result of Faltings, X (Kn) is finite.
We are interested in the following questions:

1 as n→∞, is #X (Kn) bounded? In other words, is X (Kcyc) finite?
2 Suppose that #X (Kn) is bounded as n→∞, let m0(p) be the minimal

number such that X (Kn) = X (Km0(p)) for all n > m0(p). How can one
better describe m0(p)?

3 Under what conditions is m0(p) = 0, i.e., under what conditions is
X (K ) = X (Kcyc)?
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Selmer groups

Let A be an abelian variety defined over a number field K . The
p-primary torsion group A[p∞] ⊂ A(K̄ ) admits an action of the
absolute Galois group Gal(K̄/K ).
For each number field extension F/K , the Selmer group Selp∞(A/F )
consists of Galois cohomology classes

f ∈ H1(Gal
(
K̄/F

)
,A[p∞])

satisfying suitable local conditions.
It fits into a short exact sequence

0→ A(F )⊗Qp/Zp → Selp∞(A/F )→X(A/F )[p∞]→ 0.
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Selmer groups over the cyclotomic tower

The Selmer group over Kcyc is taken to be the direct limit

Selp∞(A/Kcyc) := lim−→
n

Selp∞(A/Kn).

Iwasawa introduced the completed algebra
Λ := lim←−n

Zp[Gal(Kn/K )] ≃ Zp[[T ]]. Here the formal variable T
coincides with γ − 1, where γ is any choice of topological generator of
Gal(Kcyc/K ).
The Pontryagin dual
Selp∞(A/Kcyc)

∨ := Homcnts(Selp∞(A/Kcyc),Qp/Zp) is a finitely
generated as a Λ-module.
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Assume that A has good ordinary reduction at the primes of K above
p. A conjecture of Mazur states that Selp∞(A/Kcyc)

∨ is a torsion
Λ-module.
The conjecture holds when A is of GL2-type.
It is not hard to show that the conjecture holds when Selp∞(A/K ) is
finite, i.e., when rankA(K ) = 0 and X(A/K )[p∞] is finite.
The λ-invariant of Selp∞(A/Kcyc)

∨ is given by

λp(A/Kcyc) := rankZp

(
Selp∞(A/Kcyc)

∨) .
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Mazur’s theorem

Theorem (Mazur)
Assume that Selp∞(A/Kcyc)

∨ is a torsion Λ-module. There exists
n0 = n0(p) such that rankA(Kn) = rankA(Kn0) for all n > n0.
Furthermore, rankA(Kn) is bounded above by λp(A/Kcyc).

This means in particular that if rankA(K ) = λp(A/Kcyc), then,
rankA(K ) = rankA(Kn) for all n.
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Imai’s theorem

Theorem (Imai)
Let A/K be an abelian variety with good reduction at all primes above p,
then the torsion subgroup of A(Kcyc) is finite.

We let α(p) denote the order of the torsion group.
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Mordell’s conjecture over Kcyc

Theorem
Let X be a nice curve of genus g > 1 defined over a number field K and A
let be the Jacobian of X . Assume that the following conditions hold:

1 A has good ordinary reduction at the primes above p,
2 Selp∞(A/Kcyc)

∨ is torsion over Λ.
Then, X (Kcyc) is finite. Suppose that X (K ) ̸= ∅ and let m0 be the
minimum integer such that X (Kn) = X (Km0) for all n > m0. Then, we
have that

m0 ≤ n0 + ⌊logp α(p)⌋.
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Sketch of argument

Recall that n0 is minimal such that

rankA(Kn) = rankA(Kn0)

for all n > n0.
Assume without loss of generality that for some n > n0,

A(Kn) ̸= A(Kn−1).

Let Q ∈ A(Kn) be a point such that Q /∈ A(Kn−1).
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We find that NQ ∈ A(Kn0) for some N > 1, since [A(Kn) : A(Kn0)] is
finite.
As σ ranges over Gal(Kn/Kn0) ≃ Z/pn−n0Z, the points
Pσ := Q − σ(Q) are distinct torsion points in A(Kcyc).
This gives the bound pn−n0 ≤ α(p), or said differently,

n ≤ n0 + ⌊logp α(p)⌋.
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The big image hypothesis

Let A be a principally polarized abelian variety over K .
The big Tate-module is the inverse limit

T(A) := lim←−
m

A[m] =
∏
ℓ

Tℓ(A).

The Galois action on A[m] coincides with a representation

ρA,m : Gal(K̄/K )→ GSp2g (Z/mZ).

Let ρ̂ : Gal(K̄/K )→ GSp2g (Ẑ) be the Galois representation on T(A)

(Ẑ = lim←−Z/nZ =
∏

ℓ Zℓ).
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The representation ρ̂ is said to have big image if (image ρ̂) ∩ Sp2g (Ẑ)
is a finite index subgroup of Sp2g (Ẑ).

Theorem (Serre, Pink)

Let A/Q be an abelian variety and assume that End(A/Q̄) = Z. Then the

image of ρ̂ contains a finite index subgroup of GSp2g (Ẑ) provided g = 1, 2,
or g ≥ 3 is not in the set{

1
2
(2n)k | n > 0, k ≥ 3 is odd

}
∪
{

1
2

(
2n
n

)
| n ≥ 3 is odd

}
.
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Theorem (Serre, Pink)

Let A/Q be an abelian variety and assume that End(A/Q̄) = Z. Then the

image of ρ̂ contains a finite index subgroup of GSp2g (Ẑ) provided g = 1, 2,
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A generalization of Imai’s theorem

Theorem
Let A be an abelian variety defined over K such that the image of ρ̂ is
large. Let K∞ be any pro-p extension of K . Furthermore assume that
A(K ) has no p-torsion. Then, the torsion subgroup of A(K∞) is finite.
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For any prime ℓ, let Ḡℓ be the image of the mod-ℓ representation

ρA,ℓ : Gal(K̄/K )→ GSp2g (Fℓ).

We say that ℓ is exceptional if Ḡℓ does not contain Sp2g (Fℓ).
The big image hypothesis implies that the set Σ of exceptional primes
is finite.
Let K (A[n]) be the field generated by the n-torsion points. In other
words, it is the field fixed by the kernel of the mod-n representation

ρA,n : Gal(K̄/K )→ GSp2g (Z/nZ).

Then, if p is a prime such that A(K )[p] = 0, and K∞ is any pro-p
extension of K , then

A(K∞)tors ⊆ A(L)tors,

where L = K (A[
∏

ℓ∈Σ ℓ]).
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Theorem
Let A be any abelian variety over K such that ρ̂ has big image. Then,
α(p) := #A

(
K

(p)
cyc

)
tors

is bounded as p →∞.

Theorem
Let X be a nice curve of genus g > 1 defined over a number field K and A
let be the Jacobian of X . Assume that ρ̂ has big image. Then, for p ≫ 0,
such that

1 A has good ordinary reduction at the primes above p,
2 Selp∞(A/Kcyc)

∨ is torsion over Λ,

X (K
(p)
cyc ) = X (K

(p)
n0(p)

).

Here we recall that n0(p) is the minimal value such that
rankA(Kn) = rankA(Kn0(p)).
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The rank zero case

When A = JacX has rank zero, there is an explicit criterion for
n0(p) = 0, i.e., rankA(K ) = rankA(K

(p)
cyc ).

We assume that the Tate-Shafarevich group X(A/K ) is finite, under
this assumption, Selp∞(A/Kcyc)

∨ is a torsion Λ-module.
The Selmer group is pseudoisomorphic to a direct sum of cyclic
Λ-modules

Selp∞(A/Kcyc)
∨ ≃

⊕
j

Λ/(fj(T )).

The characteristic element is the product f (T ) :=
∏

j fj(T ).
Consider the power series expansion of f (T )

f (T ) = a0 + a1T + a2T
2 + . . . .
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Criterion for n0(p) = 0

When a0 is a p-adic unit, the characteristic element f (T ) is a unit in
Λ.
This is the case if and only if the Selmer group Selp∞(A/Kcyc) is finite.
On the other hand, there is a p-adic anologue of the BSD formula for
the leading coefficient

a0 ∼
#X(A/K )[p∞]×

∏
v ∤p c

(p)
v (A/K )×

(∏
v |p #A(kv )[p

∞]
)2

(#A(K )[p∞])2
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Theorem
Let X be a nice curve of genus g > 1 defined over a number field K and A
be the Jacobian of X . Assume that the following conditions hold:

1 rankA(K ) = 0,
2 X(A/K ) is finite,
3 ρ̂ has big image,
4 X (K ) ̸= ∅.

Then, for all non-anomalous primes p ≫ 0 above which A has good
ordinary reduction,

X (K
(p)
cyc ) = X (K ).

Theorem
Let A/K be an abelian variety for which ρ̂ has big image. Then, 100% of
primes p are non-anomalous.
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Thank you!
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