Rational points on algebraic curves in infinite towers of number fields

Anwesh Ray

University of British Columbia

anweshray@math.ubc.ca

December 4, 2021

Anwesh Ray (UBC)

Points on curves in infinite towers

December 4, 2021

Motivation

• Iwasawa theory is the study of growth patterns of arithmetic objects in infinite towers of number fields.

- 4 ⊒ →

< 47 ▶

3

- Iwasawa theory is the study of growth patterns of arithmetic objects in infinite towers of number fields.
- Fix a number field K and let p be a prime number.

→ ∃ →

- Iwasawa theory is the study of growth patterns of arithmetic objects in infinite towers of number fields.
- Fix a number field K and let p be a prime number.
- We consider an infinite tower of number fields coming from cyclotomic extensions of *K*.

- Iwasawa theory is the study of growth patterns of arithmetic objects in infinite towers of number fields.
- Fix a number field K and let p be a prime number.
- We consider an infinite tower of number fields coming from cyclotomic extensions of *K*.
- For n ≥ 1, let μ_{pⁿ} be the pⁿ-th roots of unity. Let K(μ_{p∞}) be the infinite Galois extension of K generated by the p-power roots of unity

$$\mu_{p^{\infty}} = \cup_{n} \mu_{p^{n}}.$$

	< E	< ₽ >	< ₹ >	◆夏≯	2	500
Anwesh Ray (UBC)	Points on curves in infinite towers	De	ecember	4, 2021		3 / 22

• For $n \in \mathbb{Z}_{\geq 1}$, let $K_n \subset K(\mu_{p^{\infty}})$ be the extension of K such that $[K_n : K] = p^n$.

(3)

-

- For $n \in \mathbb{Z}_{\geq 1}$, let $K_n \subset K(\mu_{p^{\infty}})$ be the extension of K such that $[K_n : K] = p^n$.
- For n = 0, set $K_0 := K$.

★ 3 > 3

- For $n \in \mathbb{Z}_{\geq 1}$, let $K_n \subset K(\mu_{p^{\infty}})$ be the extension of K such that $[K_n : K] = p^n$.
- For n = 0, set $K_0 := K$.
- Thus, we have defined an infinite tower of number fields

$$K \subset K_1 \subset \cdots \subset K_n \subset K_{n+1} \subset \ldots,$$

and let $K_{cyc} := \bigcup_n K_n$.

Anwesh Ray (UBC)

• = •

- For $n \in \mathbb{Z}_{\geq 1}$, let $K_n \subset K(\mu_{p^{\infty}})$ be the extension of K such that $[K_n : K] = p^n$.
- For n = 0, set $K_0 := K$.
- Thus, we have defined an infinite tower of number fields

$$K \subset K_1 \subset \cdots \subset K_n \subset K_{n+1} \subset \ldots,$$

and let $K_{\text{cyc}} := \bigcup_n K_n$.

• Note that ${\operatorname{Gal}}(K_n/K)\simeq {\mathbb{Z}}/p^n{\mathbb{Z}}$ and

$$\operatorname{Gal}(K_{\operatorname{cyc}}/K) \simeq \varprojlim_n \operatorname{Gal}(K_n/K) \simeq \varprojlim_n \mathbb{Z}/p^n \mathbb{Z} \simeq \mathbb{Z}_p.$$

- For $n \in \mathbb{Z}_{\geq 1}$, let $K_n \subset K(\mu_{p^{\infty}})$ be the extension of K such that $[K_n : K] = p^n$.
- For n = 0, set $K_0 := K$.
- Thus, we have defined an infinite tower of number fields

$$K \subset K_1 \subset \cdots \subset K_n \subset K_{n+1} \subset \ldots,$$

and let $K_{cyc} := \bigcup_n K_n$.

• Note that ${\operatorname{Gal}}(K_n/K)\simeq {\mathbb{Z}}/p^n{\mathbb{Z}}$ and

$$\operatorname{Gal}(K_{\operatorname{cyc}}/K) \simeq \varprojlim_n \operatorname{Gal}(K_n/K) \simeq \varprojlim_n \mathbb{Z}/p^n \mathbb{Z} \simeq \mathbb{Z}_p.$$

• When we need to emphasize the dependence on p, we use $\mathcal{K}_n^{(p)}$ and $\mathcal{K}_{cyc}^{(p)}$.

Growth of Mordell-Weil in the cyclotomic tower

		N LP P	1 = 1	1 = 1	÷.	•) 4 (•
Anwesh Ray (UBC)	Points on curves in infinite towers	Dec	ember 4	4, 2021		4 / 22

Growth of Mordell-Weil in the cyclotomic tower

• Iwasawa studied growth patterns of class groups of K_n as $n \to \infty$.

- Iwasawa studied growth patterns of class groups of K_n as $n \to \infty$.
- Mazur initiated the Iwasawa theory of elliptic curves.

- Iwasawa studied growth patterns of class groups of K_n as $n \to \infty$.
- Mazur initiated the Iwasawa theory of elliptic curves.
- Kato and Rohlrich showed that if $E_{/\mathbb{Q}}$ is an elliptic curve and K/\mathbb{Q} is an abelian extension, then as $n \to \infty$, the rank of $E(K_n)$ is bounded.

- Iwasawa studied growth patterns of class groups of K_n as $n \to \infty$.
- Mazur initiated the Iwasawa theory of elliptic curves.
- Kato and Rohlrich showed that if $E_{/\mathbb{Q}}$ is an elliptic curve and K/\mathbb{Q} is an abelian extension, then as $n \to \infty$, the rank of $E(K_n)$ is bounded.
- More generally, if E is an elliptic curve over any number field K, there are certain conditions under which rank $E(K_n)$ is bounded as $n \to \infty$.

- Iwasawa studied growth patterns of class groups of K_n as $n \to \infty$.
- Mazur initiated the Iwasawa theory of elliptic curves.
- Kato and Rohlrich showed that if $E_{/\mathbb{Q}}$ is an elliptic curve and K/\mathbb{Q} is an abelian extension, then as $n \to \infty$, the rank of $E(K_n)$ is bounded.
- More generally, if E is an elliptic curve over any number field K, there are certain conditions under which rank $E(K_n)$ is bounded as $n \to \infty$.
- We study a similar question for curves of higher genus.

Curves of genus g > 1

• Let X be a *nice* curve over a number field K, i.e., X is smooth projective geometrically integral over K. Assume that the genus g > 1.

I ⇒

- Let X be a *nice* curve over a number field K, i.e., X is smooth projective geometrically integral over K. Assume that the genus g > 1.
- By the celebrated result of Faltings, $X(K_n)$ is finite.

- Let X be a *nice* curve over a number field K, i.e., X is smooth projective geometrically integral over K. Assume that the genus g > 1.
- By the celebrated result of Faltings, $X(K_n)$ is finite.
- We are interested in the following questions:

- Let X be a *nice* curve over a number field K, i.e., X is smooth projective geometrically integral over K. Assume that the genus g > 1.
- By the celebrated result of Faltings, $X(K_n)$ is finite.
- We are interested in the following questions:
 - **(**) as $n \to \infty$, is $\#X(K_n)$ bounded? In other words, is $X(K_{cyc})$ finite?

- Let X be a *nice* curve over a number field K, i.e., X is smooth projective geometrically integral over K. Assume that the genus g > 1.
- By the celebrated result of Faltings, $X(K_n)$ is finite.
- We are interested in the following questions:
 - **(**) as $n \to \infty$, is $\#X(K_n)$ bounded? In other words, is $X(K_{cyc})$ finite?
 - Suppose that #X(K_n) is bounded as n→∞, let m₀(p) be the minimal number such that X(K_n) = X(K_{m₀(p)}) for all n > m₀(p). How can one better describe m₀(p)?

- Let X be a *nice* curve over a number field K, i.e., X is smooth projective geometrically integral over K. Assume that the genus g > 1.
- By the celebrated result of Faltings, $X(K_n)$ is finite.
- We are interested in the following questions:
 - **()** as $n \to \infty$, is $\#X(K_n)$ bounded? In other words, is $X(K_{cyc})$ finite?
 - Suppose that #X(K_n) is bounded as n→∞, let m₀(p) be the minimal number such that X(K_n) = X(K_{m₀(p)}) for all n > m₀(p). How can one better describe m₀(p)?
 - Onder what conditions is m₀(p) = 0, i.e., under what conditions is X(K) = X(K_{cyc})?

Selmer groups

Selmer groups

• Let A be an abelian variety defined over a number field K. The p-primary torsion group $A[p^{\infty}] \subset A(\bar{K})$ admits an action of the absolute Galois group $Gal(\bar{K}/K)$.

- Let A be an abelian variety defined over a number field K. The p-primary torsion group A[p[∞]] ⊂ A(K̄) admits an action of the absolute Galois group Gal(K̄/K).
- For each number field extension F/K, the Selmer group $\operatorname{Sel}_{p^{\infty}}(A/F)$ consists of Galois cohomology classes

$$f \in H^1(\operatorname{Gal}\left(\bar{K}/F\right), A[p^{\infty}])$$

satisfying suitable local conditions.

- Let A be an abelian variety defined over a number field K. The p-primary torsion group A[p[∞]] ⊂ A(K̄) admits an action of the absolute Galois group Gal(K̄/K).
- For each number field extension F/K, the Selmer group $\operatorname{Sel}_{p^{\infty}}(A/F)$ consists of Galois cohomology classes

$$f \in H^1(\operatorname{Gal}\left(\overline{K}/F\right), A[p^{\infty}])$$

satisfying suitable local conditions.

• It fits into a short exact sequence

$$0 \to A(F) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \mathsf{Sel}_{p^\infty}(A/F) \to \mathrm{III}(A/F)[p^\infty] \to 0.$$

			- /
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	7 / 22

• The Selmer group over K_{cyc} is taken to be the direct limit

$$\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(A/K_{n}).$$

• The Selmer group over K_{cyc} is taken to be the direct limit

$$\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(A/K_{n}).$$

• Iwasawa introduced the completed algebra $\Lambda := \lim_{n \to \infty} \mathbb{Z}_p[\operatorname{Gal}(K_n/K)] \simeq \mathbb{Z}_p[[T]]$. Here the formal variable T coincides with $\gamma - 1$, where γ is any choice of topological generator of $\operatorname{Gal}(K_{\operatorname{cyc}}/K)$.

• The Selmer group over K_{cyc} is taken to be the direct limit

$$\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(A/K_{n}).$$

- Iwasawa introduced the completed algebra $\Lambda := \lim_{n \to \infty} \mathbb{Z}_p[\operatorname{Gal}(K_n/K)] \simeq \mathbb{Z}_p[[T]].$ Here the formal variable T coincides with $\gamma - 1$, where γ is any choice of topological generator of $\operatorname{Gal}(K_{\operatorname{cyc}}/K)$.
- The Pontryagin dual Sel_p∞(A/K_{cyc})[∨] := Hom_{cnts}(Sel_p∞(A/K_{cyc}), Q_p/Z_p) is a finitely generated as a Λ-module.

7 / 22

	< د	그 에 비행에 비행하는 비행이 가지 않는 것이 있는 것이 같이 않는 것이 없다. 나는 것이 같이 있는 것이 없는 것 않이	€
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	8 / 22

• Assume that A has good ordinary reduction at the primes of K above p. A conjecture of Mazur states that $\operatorname{Sel}_{p^{\infty}}(A/K_{cyc})^{\vee}$ is a torsion Λ -module.

- Assume that A has good ordinary reduction at the primes of K above p. A conjecture of Mazur states that $\operatorname{Sel}_{p^{\infty}}(A/K_{cyc})^{\vee}$ is a torsion Λ -module.
- The conjecture holds when A is of GL₂-type.
- Assume that A has good ordinary reduction at the primes of K above p. A conjecture of Mazur states that $\operatorname{Sel}_{p^{\infty}}(A/K_{cyc})^{\vee}$ is a torsion Λ -module.
- The conjecture holds when A is of GL₂-type.

Anwesh Ray (UBC)

• It is not hard to show that the conjecture holds when $\operatorname{Sel}_{p^{\infty}}(A/K)$ is finite, i.e., when rank A(K) = 0 and $\operatorname{III}(A/K)[p^{\infty}]$ is finite.

- Assume that A has good ordinary reduction at the primes of K above p. A conjecture of Mazur states that $\operatorname{Sel}_{p^{\infty}}(A/K_{cyc})^{\vee}$ is a torsion Λ -module.
- The conjecture holds when A is of GL₂-type.
- It is not hard to show that the conjecture holds when $\operatorname{Sel}_{p^{\infty}}(A/K)$ is finite, i.e., when rank A(K) = 0 and $\operatorname{III}(A/K)[p^{\infty}]$ is finite.
- The λ -invariant of $\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee}$ is given by

$$\lambda_p(A/K_{\operatorname{cyc}}) := \operatorname{rank}_{\mathbb{Z}_p} \left(\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee}
ight).$$

Mazur's theorem

			2.40
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	9 / 22

A D N A D N A D N A D N - D

500

Theorem (Mazur)

Assume that $\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee}$ is a torsion Λ -module. There exists $n_0 = n_0(p)$ such that rank $A(K_n) = \operatorname{rank} A(K_{n_0})$ for all $n > n_0$. Furthermore, rank $A(K_n)$ is bounded above by $\lambda_p(A/K_{\operatorname{cyc}})$.

Theorem (Mazur)

Assume that $\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee}$ is a torsion Λ -module. There exists $n_0 = n_0(p)$ such that rank $A(K_n) = \operatorname{rank} A(K_{n_0})$ for all $n > n_0$. Furthermore, rank $A(K_n)$ is bounded above by $\lambda_p(A/K_{\operatorname{cyc}})$.

• This means in particular that if rank $A(K) = \lambda_p(A/K_{cyc})$, then, rank $A(K) = \operatorname{rank} A(K_n)$ for all n.

Imai's theorem

Theorem (Imai)

Let $A_{/K}$ be an abelian variety with good reduction at all primes above p, then the torsion subgroup of $A(K_{cyc})$ is finite.

Theorem (Imai)

Let $A_{/K}$ be an abelian variety with good reduction at all primes above p, then the torsion subgroup of $A(K_{cyc})$ is finite.

• We let $\alpha(p)$ denote the order of the torsion group.

Mordell's conjecture over K_{cyc}

		 A DEVICE A REAL	=
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	11/22

4 4 N

Let X be a nice curve of genus g > 1 defined over a number field K and A let be the Jacobian of X. Assume that the following conditions hold:

Anwesh Ray (UBC)	Points on curves in infinite towers	Dec	ember	4, 2021	11/22

4 D N 4 B N 4 B N 4 B N

Let X be a nice curve of genus g > 1 defined over a number field K and A let be the Jacobian of X. Assume that the following conditions hold:

A has good ordinary reduction at the primes above p,

Let X be a nice curve of genus g > 1 defined over a number field K and A let be the Jacobian of X. Assume that the following conditions hold:

- A has good ordinary reduction at the primes above p,
- **2** Sel_{*p*[∞]} $(A/K_{cyc})^{\vee}$ is torsion over Λ.

Then, $X(K_{cyc})$ is finite. Suppose that $X(K) \neq \emptyset$ and let m_0 be the minimum integer such that $X(K_n) = X(K_{m_0})$ for all $n > m_0$. Then, we have that

$$m_0 \leq n_0 + \lfloor \log_p \alpha(p) \rfloor.$$

Sketch of argument

			=
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	12 / 22

1 JUL 1

• Recall that n_0 is minimal such that

 $\operatorname{rank} A(K_n) = \operatorname{rank} A(K_{n_0})$

for all $n > n_0$.

< ∃→

3

• Recall that n_0 is minimal such that

$$\operatorname{rank} A(K_n) = \operatorname{rank} A(K_{n_0})$$

for all $n > n_0$.

• Assume without loss of generality that for some $n > n_0$,

$$A(K_n) \neq A(K_{n-1}).$$

• Recall that n_0 is minimal such that

$$\operatorname{rank} A(K_n) = \operatorname{rank} A(K_{n_0})$$

for all $n > n_0$.

• Assume without loss of generality that for some $n > n_0$,

$$A(K_n) \neq A(K_{n-1}).$$

• Let $Q \in A(K_n)$ be a point such that $Q \notin A(K_{n-1})$.

Anwesh Ray (UBC)

	< د	< 🗗 >	${\bf A} \equiv {\bf A}$	◆夏≯	2	$\mathcal{O}\mathcal{A}$
Anwesh Ray (UBC)	Points on curves in infinite towers	De	cember	4, 2021		13/22

• We find that $NQ \in A(K_{n_0})$ for some N > 1, since $[A(K_n) : A(K_{n_0})]$ is finite.

B → B

4 円

- We find that NQ ∈ A(K_{n0}) for some N > 1, since [A(K_n) : A(K_{n0})] is finite.
- As σ ranges over $\operatorname{Gal}(K_n/K_{n_0}) \simeq \mathbb{Z}/p^{n-n_0}\mathbb{Z}$, the points $P_{\sigma} := Q \sigma(Q)$ are distinct torsion points in $A(K_{cyc})$.

- We find that $NQ \in A(K_{n_0})$ for some N > 1, since $[A(K_n) : A(K_{n_0})]$ is finite.
- As σ ranges over $\operatorname{Gal}(K_n/K_{n_0}) \simeq \mathbb{Z}/p^{n-n_0}\mathbb{Z}$, the points $P_{\sigma} := Q \sigma(Q)$ are distinct torsion points in $A(K_{cyc})$.
- This gives the bound $p^{n-n_0} \leq \alpha(p)$, or said differently,

 $n \leq n_0 + \lfloor \log_p \alpha(p) \rfloor.$

Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	14 / 22

4 D N 4 B N 4 B N 4 B N

= nor

• Let A be a principally polarized abelian variety over K.

3 🕨 🤅 3

< 47 ▶

- Let A be a principally polarized abelian variety over K.
- The big Tate-module is the inverse limit

$$\mathsf{T}(A) := \varprojlim_m A[m] = \prod_\ell \mathsf{T}_\ell(A).$$

B → B

- Let A be a principally polarized abelian variety over K.
- The big Tate-module is the inverse limit

$$\mathsf{T}(A) := \varprojlim_m A[m] = \prod_\ell \mathsf{T}_\ell(A).$$

• The Galois action on A[m] coincides with a representation

$$\rho_{A,m} : \operatorname{Gal}(\bar{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{Z}/m\mathbb{Z}).$$

- Let A be a principally polarized abelian variety over K.
- The big Tate-module is the inverse limit

$$\mathsf{T}(A) := \varprojlim_m A[m] = \prod_\ell \mathsf{T}_\ell(A).$$

• The Galois action on A[m] coincides with a representation

$$\rho_{A,m} : \operatorname{Gal}(\bar{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{Z}/m\mathbb{Z}).$$

• Let $\widehat{\rho}$: $\operatorname{Gal}(\overline{K}/K) \to \operatorname{GSp}_{2g}(\widehat{\mathbb{Z}})$ be the Galois representation on T(A) $(\widehat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z} = \prod_{\ell} \mathbb{Z}_{\ell}).$

	< د	コントロント・ロント	ヨトー	₹.	$\mathcal{O}\mathcal{A}\mathcal{O}$
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4	2021		15 / 22

B → B

Theorem (Serre, Pink)

Let $A_{/\mathbb{Q}}$ be an abelian variety and assume that $\operatorname{End}(A_{/\overline{\mathbb{Q}}}) = \mathbb{Z}$. Then the image of $\widehat{\rho}$ contains a finite index subgroup of $\operatorname{GSp}_{2g}(\widehat{\mathbb{Z}})$ provided g = 1, 2, or $g \geq 3$ is not in the set

$$\left\{\frac{1}{2}(2n)^k \mid n > 0, k \ge 3 \text{ is odd}\right\} \cup \left\{\frac{1}{2}\binom{2n}{n} \mid n \ge 3 \text{ is odd}\right\}.$$

A generalization of Imai's theorem

			= +) <	C.
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	16/2	2

1 JUL 1

4 1 1

Let A be an abelian variety defined over K such that the image of $\hat{\rho}$ is large. Let K_{∞} be any pro-p extension of K. Furthermore assume that A(K) has no p-torsion. Then, the torsion subgroup of $A(K_{\infty})$ is finite.

	< د	그 에 주 에 에 에 관 에 관 에 관 이 가 하는 것이 않아. 것이 않아, 것이 하는 것이 하는 것이 않아, 것이 하는 것이 않아,	≣ ୬∢ଙ
nwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	17 / 22

$$\rho_{A,\ell} : \operatorname{Gal}(\bar{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{F}_{\ell}).$$

3)) J

4 円

- For any prime ℓ , let \overline{G}_{ℓ} be the image of the mod- ℓ representation $\rho_{A,\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{F}_{\ell}).$
- We say that ℓ is *exceptional* if \overline{G}_{ℓ} does not contain $\text{Sp}_{2g}(\mathbb{F}_{\ell})$.

$$\rho_{A,\ell} : \operatorname{Gal}(\bar{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{F}_{\ell}).$$

- We say that ℓ is *exceptional* if \overline{G}_{ℓ} does not contain $\operatorname{Sp}_{2g}(\mathbb{F}_{\ell})$.
- The big image hypothesis implies that the set Σ of exceptional primes is finite.

$$\rho_{\mathcal{A},\ell}: \mathsf{Gal}(\bar{\mathcal{K}}/\mathcal{K}) \to \mathsf{GSp}_{2g}(\mathbb{F}_{\ell}).$$

- We say that ℓ is *exceptional* if \overline{G}_{ℓ} does not contain $\operatorname{Sp}_{2g}(\mathbb{F}_{\ell})$.
- The big image hypothesis implies that the set Σ of exceptional primes is finite.
- Let K(A[n]) be the field generated by the *n*-torsion points. In other words, it is the field fixed by the kernel of the mod-*n* representation

$$\rho_{A,n} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{Z}/n\mathbb{Z}).$$

17 / 22

$$\rho_{\mathcal{A},\ell}: \mathsf{Gal}(\bar{\mathcal{K}}/\mathcal{K}) \to \mathsf{GSp}_{2g}(\mathbb{F}_{\ell}).$$

- We say that ℓ is *exceptional* if \overline{G}_{ℓ} does not contain $\operatorname{Sp}_{2g}(\mathbb{F}_{\ell})$.
- The big image hypothesis implies that the set Σ of exceptional primes is finite.
- Let K(A[n]) be the field generated by the *n*-torsion points. In other words, it is the field fixed by the kernel of the mod-*n* representation

$$\rho_{A,n} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GSp}_{2g}(\mathbb{Z}/n\mathbb{Z}).$$

• Then, if p is a prime such that A(K)[p] = 0, and K_{∞} is any pro-p extension of K, then

$$A(K_{\infty})_{tors} \subseteq A(L)_{tors},$$

where $L = K(A[\prod_{\ell \in \Sigma} \ell])$.
	∢ د	• • • ₽ •	◆ ■ ▶	◆≣≯	1	$\mathcal{O} \land \mathcal{O}$
Anwesh Ray (UBC)	Points on curves in infinite towers	D	ecember 4	4, 2021		18/22

Let A be any abelian variety over K such that $\hat{\rho}$ has big image. Then, $\alpha(p) := \#A\left(K_{cyc}^{(p)}\right)_{tors}$ is bounded as $p \to \infty$.

Let A be any abelian variety over K such that $\hat{\rho}$ has big image. Then, $\alpha(p) := \#A\left(K_{cyc}^{(p)}\right)_{tors}$ is bounded as $p \to \infty$.

Theorem

Let X be a nice curve of genus g > 1 defined over a number field K and A let be the Jacobian of X. Assume that $\hat{\rho}$ has big image. Then, for $p \gg 0$, such that

Let A be any abelian variety over K such that $\hat{\rho}$ has big image. Then, $\alpha(p) := \#A\left(K_{cyc}^{(p)}\right)_{tors}$ is bounded as $p \to \infty$.

Theorem

Let X be a nice curve of genus g > 1 defined over a number field K and A let be the Jacobian of X. Assume that $\hat{\rho}$ has big image. Then, for $p \gg 0$, such that

1 A has good ordinary reduction at the primes above p,

Let A be any abelian variety over K such that $\hat{\rho}$ has big image. Then, $\alpha(p) := \#A\left(K_{cyc}^{(p)}\right)_{tors}$ is bounded as $p \to \infty$.

Theorem

Let X be a nice curve of genus g > 1 defined over a number field K and A let be the Jacobian of X. Assume that $\hat{\rho}$ has big image. Then, for $p \gg 0$, such that

• A has good ordinary reduction at the primes above p,

2 Sel_{p^{∞}</sup> $(A/K_{cyc})^{\vee}$ is torsion over Λ ,}

$$X(K_{cyc}^{(p)}) = X(K_{n_0(p)}^{(p)}).$$

Here we recall that $n_0(p)$ is the minimal value such that rank $A(K_n) = \operatorname{rank} A(K_{n_0(p)})$.

- ロ ト - 4 同 ト - 4 回 ト - - 三日

			=
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	19 / 22

• When A = Jac X has rank zero, there is an explicit criterion for $n_0(p) = 0$, i.e., rank $A(K) = \text{rank } A(K_{\text{cyc}}^{(p)})$.

<20 ≥ 3

< 4[™] > <

- When A = Jac X has rank zero, there is an explicit criterion for $n_0(p) = 0$, i.e., rank $A(K) = \text{rank } A(K_{\text{cyc}}^{(p)})$.
- We assume that the Tate-Shafarevich group III(A/K) is finite, under this assumption, Sel_p_∞(A/K_{cyc})[∨] is a torsion Λ-module.

- When $A = \operatorname{Jac} X$ has rank zero, there is an explicit criterion for $n_0(p) = 0$, i.e., rank $A(K) = \operatorname{rank} A(K_{cyc}^{(p)})$.
- We assume that the Tate-Shafarevich group III(A/K) is finite, under this assumption, Sel_p∞(A/K_{cyc})[∨] is a torsion Λ-module.
- The Selmer group is pseudoisomorphic to a direct sum of cyclic Λ-modules

$$\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee}\simeq \bigoplus_{j} \Lambda/(f_{j}(T)).$$

- When $A = \operatorname{Jac} X$ has rank zero, there is an explicit criterion for $n_0(p) = 0$, i.e., rank $A(K) = \operatorname{rank} A(K_{cyc}^{(p)})$.
- We assume that the Tate-Shafarevich group III(A/K) is finite, under this assumption, Sel_p∞(A/K_{cyc})[∨] is a torsion Λ-module.
- The Selmer group is pseudoisomorphic to a direct sum of cyclic Λ-modules

$$\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee} \simeq \bigoplus_{j} \Lambda/(f_{j}(T)).$$

• The characteristic element is the product $f(T) := \prod_{i} f_i(T)$.

- When A = Jac X has rank zero, there is an explicit criterion for $n_0(p) = 0$, i.e., rank $A(K) = \text{rank } A(K_{\text{cyc}}^{(p)})$.
- We assume that the Tate-Shafarevich group III(A/K) is finite, under this assumption, Sel_p∞(A/K_{cyc})[∨] is a torsion Λ-module.
- The Selmer group is pseudoisomorphic to a direct sum of cyclic Λ-modules

$$\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})^{\vee} \simeq \bigoplus_{j} \Lambda/(f_{j}(T)).$$

- The characteristic element is the product $f(T) := \prod_{i} f_i(T)$.
- Consider the power series expansion of f(T)

$$f(T) = a_0 + a_1 T + a_2 T^2 + \dots$$

When a₀ is a p-adic unit, the characteristic element f(T) is a unit in Λ.

→

- When a₀ is a p-adic unit, the characteristic element f(T) is a unit in Λ.
- This is the case if and only if the Selmer group $\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})$ is finite.

- When a₀ is a p-adic unit, the characteristic element f(T) is a unit in Λ.
- This is the case if and only if the Selmer group $\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})$ is finite.
- On the other hand, there is a *p*-adic anologue of the BSD formula for the leading coefficient

$$a_0 \sim rac{\#\mathrm{III}(A/K)[p^{\infty}] imes \prod_{v \nmid p} c_v^{(p)}(A/K) imes \left(\prod_{v \mid p} \#A(k_v)[p^{\infty}]\right)^2}{(\#A(K)[p^{\infty}])^2}$$

- When a₀ is a p-adic unit, the characteristic element f(T) is a unit in Λ.
- This is the case if and only if the Selmer group $\operatorname{Sel}_{p^{\infty}}(A/K_{\operatorname{cyc}})$ is finite.
- On the other hand, there is a *p*-adic anologue of the BSD formula for the leading coefficient

$$a_0 \sim \frac{\# \mathrm{III}(A/K)[p^{\infty}] \times \prod_{\nu \nmid p} c_{\nu}^{(p)}(A/K) \times \left(\prod_{\nu \mid p} \# A(k_{\nu})[p^{\infty}]\right)^2}{(\# A(K)[p^{\infty}])^2}$$

• A prime p is anomalous if $p \mid #A(k_v)$ for some prime $v \mid p$.

	∢ ⊑	그에 소리에 제공에 소문에 소문에 있는	ヨー つくぐ
Anwesh Ray (UBC)	Points on curves in infinite towers	December 4, 2021	21 / 22

Let X be a nice curve of genus g > 1 defined over a number field K and A be the Jacobian of X. Assume that the following conditions hold:

3

A (10) × (10)

Let X be a nice curve of genus g > 1 defined over a number field K and A be the Jacobian of X. Assume that the following conditions hold:

• rank A(K) = 0,

Let X be a nice curve of genus g > 1 defined over a number field K and A be the Jacobian of X. Assume that the following conditions hold:

- rank A(K) = 0,
- **2** III(A/K) is finite,

く 何 ト く ヨ ト く ヨ ト

Let X be a nice curve of genus g > 1 defined over a number field K and A be the Jacobian of X. Assume that the following conditions hold:

- rank A(K) = 0,
- **2** III(A/K) is finite,
- **(3)** $\hat{\rho}$ has big image,

(4) 目 (4) 日 (4) H (4) H

Let X be a nice curve of genus g > 1 defined over a number field K and A be the Jacobian of X. Assume that the following conditions hold:

- rank A(K) = 0,
- **2** III(A/K) is finite,
- **3** $\widehat{
 ho}$ has big image,
- $X(K) \neq \emptyset.$

Then, for all non-anomalous primes $p\gg 0$ above which A has good ordinary reduction,

 $X(K_{\rm cyc}^{(p)})=X(K).$

B 🖌 🖌 B 🛌 - B

Let X be a nice curve of genus g > 1 defined over a number field K and A be the Jacobian of X. Assume that the following conditions hold:

- rank A(K) = 0,
- **2** III(A/K) is finite,
- **3** $\hat{\rho}$ has big image,
- $X(K) \neq \emptyset.$

Then, for all non-anomalous primes $p \gg 0$ above which A has good ordinary reduction,

 $X(K_{\rm cyc}^{(p)})=X(K).$

Theorem

Let $A_{/K}$ be an abelian variety for which $\hat{\rho}$ has big image. Then, 100% of primes p are non-anomalous.

Anwesh Ray (UBC)

Thank you!

	∢ [< 🗗 🕨	< ≣ >	◆夏≯	3	$\mathcal{O} \land \mathcal{O}$
Anwesh Ray (UBC)	Points on curves in infinite towers	D	ecember	4, 2021		22 / 22